Kinetochore mutations and histone phosphorylation pattern changes accompany holo- and macro-monocentromere evolution
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
41422075
PubMed Central
PMC12722358
DOI
10.1038/s41467-025-67524-8
PII: 10.1038/s41467-025-67524-8
Knihovny.cz E-zdroje
- MeSH
- centromera * genetika metabolismus MeSH
- fosforylace MeSH
- histony * metabolismus genetika MeSH
- kinetochory * metabolismus MeSH
- molekulární evoluce * MeSH
- mutace * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony * MeSH
Centromeres are essential for kinetochore assembly and spindle attachment. While chromosomes of most species are monocentric with a single centromere, a minority exhibit holocentricity, with a centromere along the chromatid length. Sporadic emergence of holocentricity suggests multiple independent transitions. To explore this, we compare the centromere and (epi)genome organization of two sister genera with contrasting centromere types: Chamaelirium luteum with large macro-monocentromeres and Chionographis japonica with holocentromeres. Both exhibit chromosome-wide histone phosphorylation patterns distinct from typical monocentric species. Kinetochore analysis reveals similar chimeric Borealin in both species, with additional KNL2 loss and NSL1 chimerism in Cha. luteum. The broad-scale synteny between both genomes supports de novo holocentromere formation in Chi. japonica. Despite sharing features with both centromere types, macro-monocentromeres do not represent a direct link between mono- and holocentromeres. We propose a model for the divergent evolution involving kinetochore gene mutations, altered histone phosphorylation patterns, and centromeric satellite DNA amplification.
Zobrazit více v PubMed
Flemming W. Zellsubstanz, Kern und Zelltheilung.
Schubert, V. et al. Super-resolution microscopy reveals diversity of plant centromere architecture. PubMed DOI PMC
Kuo, Y. T., Schubert, V., Marques, A., Schubert, I. & Houben, A. Centromere diversity: how different repeat-based holocentromeres may have evolved. PubMed DOI
Macas, J. et al. Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes. PubMed DOI PMC
Neumann, P. et al. Stretching the rules: monocentric chromosomes with multiple centromere domains. PubMed DOI PMC
Grzan, T., Despot-Slade, E., Mestrovic, N., Plohl, M. & Mravinac, B. CenH3 distribution reveals extended centromeres in the model beetle PubMed DOI PMC
McKinley, K. L. & Cheeseman, I. M. The molecular basis for centromere identity and function. PubMed DOI PMC
Ochs, F. et al. Sister chromatid cohesion is mediated by individual cohesin complexes. PubMed DOI
Schmitz, M. L., Higgins, J. M. G. & Seibert, M. Priming chromatin for segregation: functional roles of mitotic histone modifications. PubMed DOI PMC
Houben, A. et al. The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. PubMed DOI
Gernand, D., Demidov, D. & Houben, A. The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. PubMed DOI
Caperta, A. D. et al. Distribution patterns of phosphorylated Thr 3 and Thr 32 of histone H3 in plant mitosis and meiosis. PubMed DOI
Agueci, F., Karimi, R. & Houben, A. Characterisation of Nima- and Haspin-like kinases in
Dong, Q. & Han, F. Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis. PubMed DOI
Demidov, D. et al. Anti-phosphorylated histone H2AThr120: a universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. PubMed DOI
Marques, A. & Drinnenberg, I. A. Same but different: Centromere regulations in holocentric insects and plants. PubMed DOI
Senaratne, A. P., Cortes-Silva, N. & Drinnenberg I. A. Evolution of holocentric chromosomes: drivers, diversity, and deterrents. PubMed
Drinnenberg, I. A., Henikoff, S. & Malik, H. S. Evolutionary turnover of kinetochore proteins: a ship of theseus? PubMed DOI PMC
Neumann, P. et al. Disruption of the standard kinetochore in holocentric PubMed DOI PMC
Drinnenberg, I. A., deYoung, D., Henikoff, S. & Malik, H. S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. PubMed DOI PMC
Senaratne, A. P. et al. Formation of the CenH3-deficient holocentromere in PubMed DOI
Cortes-Silva, N. et al. CenH3-independent kinetochore assembly in PubMed DOI
Tanaka, N. & Tanaka, N. Chromosome studies in DOI
Tanaka, N. & Tanaka, N. Chromosome studies in DOI
Tanaka, N. Chromosomal variation in populations of DOI
Tanaka, N. High Stability in Chromosomal Traits of DOI
Pellicer, J., Kelly, L. J., Leitch, I. J., Zomlefer, W. B. & Fay, M. F. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. PubMed DOI
Tanaka, N. Chromosomal traits of
Kim, C., Kim, S.-C. & Kim, J.-H. Historical Biogeography of melanthiaceae: a case of Out-of-North America through the bering land bridge. PubMed PMC
Tanaka, N. A synopsis of the genus
Kuo, Y.-T. et al. Holocentromeres can consist of merely a few megabase-sized satellite arrays. PubMed DOI PMC
Hofstatter, P. G. et al. Repeat-based holocentromeres influence genome architecture and karyotype evolution. PubMed DOI
Talbert, P. B. & Henikoff, S. What makes a centromere? PubMed DOI
Fransz, P., de Jong, J. H., Lysak, M., Castiglione, M. R. & Schubert, I. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. PubMed DOI PMC
Kuo, Y.-T. et al. The evolutionary dynamics of repetitive DNA and its impact on the genome diversification in the Genus PubMed PMC
Muller, H., Gil, J. & Drinnenberg, I. A. The impact of centromeres on spatial genome architecture. PubMed DOI
van Hooff, J. J., Tromer, E., van Wijk, L. M., Snel, B. & Kops, G. J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. PubMed PMC
Ishii, M. & Akiyoshi, B. Plasticity in centromere organization and kinetochore composition: lessons from diversity. PubMed DOI PMC
Petrovic, A. et al. The MIS12 complex is a protein interaction hub for outer kinetochore assembly. PubMed DOI PMC
Petrovic, A. et al. Structure of the MIS12 complex and molecular basis of its interaction with CENP-C at human kinetochores. PubMed DOI PMC
Oliveira, L. et al. KNL1 and NDC80 represent new universal markers for the detection of functional centromeres in plants. PubMed DOI
Houben, A. et al. Phosphorylation of histone H3 in plants-a dynamic affair. PubMed DOI
Hindriksen, S., Lens, S. M. A. & Hadders, M. A. The ins and outs of Aurora B inner centromere localization. PubMed DOI PMC
Mata-Sucre, Y. et al. Repeat-based holocentromeres of the woodrush PubMed DOI PMC
Abad, M. A. et al. Borealin-nucleosome interaction secures chromosome association of the chromosomal passenger complex. PubMed DOI PMC
DeBose-Scarlett, E. M. & Sullivan, B. A. Genomic and epigenetic foundations of neocentromere formation. PubMed DOI
Mirkin, E. & Mirkin, S. Replication fork stalling at natural impediments. PubMed DOI PMC
Sproul, J. S. et al. Dynamic evolution of euchromatic satellites on the X chromosome in PubMed DOI PMC
Kasinathan, S. & Henikoff, S. Non-B-form DNA is enriched at centromeres. PubMed DOI PMC
Shi, J. et al. Widespread gene conversion in centromere cores. PubMed DOI PMC
Dong, X. et al. The mutational dynamics of the Arabidopsis centromeres.
Lermontova, I. et al. Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. PubMed DOI PMC
Zuo, S. et al. Recurrent plant-specific duplications of KNL2 and its conserved function as a kinetochore assembly factor. PubMed DOI PMC
Hori, T. et al. Association of M18BP1/KNL2 with CENP-A nucleosome is essential for centromere formation in non-mammalian vertebrates. PubMed DOI
French, B. T., Westhorpe, F. G., Limouse, C. & Straight, A. F. Xenopus laevis M18BP1 directly binds existing CENP-A nucleosomes to promote centromeric chromatin assembly. PubMed DOI PMC
Maddox, P. S., Hyndman, F., Monen, J., Oegema, K. & Desai, A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. PubMed DOI PMC
Steiner, F. A. & Henikoff, S. Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. PubMed DOI PMC
Oliveira, L. et al. Mitotic spindle attachment to the holocentric chromosomes of PubMed DOI PMC
Le Goff, S. et al. The H3 histone chaperone NASP(SIM3) escorts CenH3 in Arabidopsis. PubMed DOI
Takeuchi, H., Nagahara, S., Higashiyama, T. & Berger, F. The chaperone NASP contributes to de novo deposition of the centromeric histone variant CENH3 in Arabidopsis early embryogenesis. PubMed DOI PMC
Maksimov, V. et al. The H3 chaperone function of NASP is conserved in Arabidopsis. PubMed DOI
Patthy, L. Modular assembly of genes and the evolution of new functions. PubMed DOI
Tromer, E. C., van Hooff, J. J. E., Kops, G. & Snel, B. Mosaic origin of the eukaryotic kinetochore. PubMed DOI PMC
Carmena, M., Wheelock, M., Funabiki, H. & Earnshaw, W. C. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. PubMed DOI PMC
Wang, F. et al. A positive feedback loop involving haspin and Aurora B promotes CPC accumulation at centromeres in mitosis. PubMed DOI PMC
Venkei, Z., Przewloka, M. R. & Glover, D. M. Drosophila Mis12 complex acts as a single functional unit essential for anaphase chromosome movement and a robust spindle assembly checkpoint. PubMed DOI PMC
Ge, X. et al. The structure and assembly of the hetero-octameric BLOC-one-related complex. PubMed DOI
More, K. J., Kaufman, J. G. G., Dacks, J. B. & Manna, P. T. Evolutionary origins of the lysosome-related organelle sorting machinery reveal ancient homology in post-endosome trafficking pathways. PubMed DOI PMC
Nielsen, M., Albrethsen, J., Larsen, F. H. & Skriver, K. The Arabidopsis ADP-ribosylation factor (ARF) and ARF-like (ARL) system and its regulation by BIG2, a large ARF–GEF. DOI
Richardson, D. N., Simmons, M. P. & Reddy, A. S. N. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. PubMed PMC
Bunning, A. R. & Gupta, M. L. Jr. The importance of microtubule-dependent tension in accurate chromosome segregation. PubMed DOI PMC
Dolezel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. PubMed
Padmarasu S., Himmelbach A., Mascher M. & Stein N. PubMed
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. PubMed DOI PMC
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. PubMed DOI PMC
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. PubMed DOI
Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. PubMed DOI PMC
Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. PubMed DOI PMC
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. PubMed DOI PMC
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. PubMed DOI PMC
Pertea, G., Pertea, M. GFF utilities: GffRead and GffCompare. PubMed PMC
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. PubMed DOI PMC
Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. PubMed DOI PMC
He, W. et al. NGenomeSyn: an easy-to-use and flexible tool for publication-ready visualization of syntenic relationships across multiple genomes. PubMed DOI PMC
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. PubMed DOI PMC
Komaki, S. & Schnittger, A. The spindle assembly checkpoint in Arabidopsis is rapidly shut off during severe stress. PubMed DOI
Su, H. et al. Knl1 participates in spindle assembly checkpoint signaling in maize. PubMed PMC
Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. PubMed DOI
Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. PubMed DOI PMC
Thompson, J. D., Higgins, D. G. & Gibson, T. J. Clustal-W - improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. PubMed DOI PMC
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. PubMed DOI PMC
Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. PubMed DOI PMC
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. PubMed DOI
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. PubMed DOI PMC
Dolezel, J., Binarova, P. & Lucretti, S. Analysis of nuclear DNA content in plant cells by flow cytometry. DOI
Pellicer, J., Fernandez, P., Fay, M. F., Michalkova, E. & Leitch, I. J. Genome size doubling arises from the differential repetitive DNA dynamics in the genus PubMed DOI PMC
Andrews, S. FastQC: a quality control tool for high throughput sequence data (2010). Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 24 November 2010).
Novak, P., Neumann, P. & Macas, J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. PubMed DOI PMC
Novak, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. PubMed DOI
Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. PubMed DOI
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. PubMed DOI PMC
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. PubMed DOI PMC
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). PubMed DOI PMC
Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. PubMed DOI PMC
Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic data sets. PubMed PMC
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. PubMed DOI PMC
Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In
Li, H. et al. The sequence alignment/map format and SAMtools. PubMed DOI PMC
Novak, P. et al. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. PubMed DOI PMC
Richards, E. J. & Ausubel, F. M. Isolation of a higher eukaryotic telomere from PubMed DOI
Zhang, T., Liu, G., Zhao, H., Braz, G. T. & Jiang, J. Chorus2: design of genome-scale oligonucleotide-based probes for fluorescence in situ hybridization. PubMed DOI PMC
Baez, M. et al. Analysis of the small chromosomal PubMed DOI PMC
Weisshart, K., Fuchs, J. & Schubert, V. Structured illumination microscopy (SIM) and photoactivated localization microscopy (PALM) to analyze the abundance and distribution of RNA polymerase II molecules on flow-sorted Arabidopsis nuclei. DOI