Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
JPMJER2003
MEXT | JST | Exploratory Research for Advanced Technology (ERATO)
20K05453
MEXT | Japan Society for the Promotion of Science (JSPS)
20K05453
MEXT | Japan Society for the Promotion of Science (JSPS)
JE210028
Korea Institute of Industrial Technology (KITECH)
23-73-00117
Russian Science Foundation (RSF)
PubMed
38806498
PubMed Central
PMC11133413
DOI
10.1038/s41467-024-48148-w
PII: 10.1038/s41467-024-48148-w
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Low-cost detection systems are needed for the identification of microplastics (MPs) in environmental samples. However, their rapid identification is hindered by the need for complex isolation and pre-treatment methods. This study describes a comprehensive sensing platform to identify MPs in environmental samples without requiring independent separation or pre-treatment protocols. It leverages the physicochemical properties of macroporous-mesoporous silver (Ag) substrates templated with self-assembled polymeric micelles to concurrently separate and analyze multiple MP targets using surface-enhanced Raman spectroscopy (SERS). The hydrophobic layer on Ag aids in stabilizing the nanostructures in the environment and mitigates biofouling. To monitor complex samples with multiple MPs and to demultiplex numerous overlapping patterns, we develop a neural network (NN) algorithm called SpecATNet that employs a self-attention mechanism to resolve the complex dependencies and patterns in SERS data to identify six common types of MPs: polystyrene, polyethylene, polymethylmethacrylate, polytetrafluoroethylene, nylon, and polyethylene terephthalate. SpecATNet uses multi-label classification to analyze multi-component mixtures even in the presence of various interference agents. The combination of macroporous-mesoporous Ag substrates and self-attention-based NN technology holds potential to enable field monitoring of MPs by generating rich datasets that machines can interpret and analyze.
Department of Solid State Engineering University of Chemistry and Technology Prague Czech Republic
National Institute for Materials Science Tsukuba Ibaraki Japan
Zobrazit více v PubMed
Lim XZ. Microplastics are everywhere - but are they harmful? Nature. 2021;593:22–25. doi: 10.1038/d41586-021-01143-3. PubMed DOI
Ivleva NP. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chem. Rev. 2021;121:11886–11936. doi: 10.1021/acs.chemrev.1c00178. PubMed DOI
Nguyen B, et al. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc. Chem. Res. 2019;52:858–866. doi: 10.1021/acs.accounts.8b00602. PubMed DOI
Zhao S, Danley M, Ward JE, Li D, Mincer TJ. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy. Anal. Methods. 2017;9:1470–1478. doi: 10.1039/C6AY02302A. DOI
Dehaut A, et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 2016;215:223–233. doi: 10.1016/j.envpol.2016.05.018. PubMed DOI
Adhikari S, Kelkar V, Kumar R, Halden RU. Methods and challenges in the detection of microplastics and nanoplastics: a mini-review. Polym. Int. 2022;71:543–551. doi: 10.1002/pi.6348. DOI
Tokai T, Uchida K, Kuroda M, Isobe A. Mesh selectivity of neuston nets for microplastics. Mar. Pollut. Bull. 2021;165:112111. doi: 10.1016/j.marpolbul.2021.112111. PubMed DOI
Kotar S, et al. Quantitative assessment of visual microscopy as a tool for microplastic research: recommendations for improving methods and reporting. Chemosphere. 2022;308:136449. doi: 10.1016/j.chemosphere.2022.136449. PubMed DOI PMC
Lenz R, Enders K, Stedmon CA, MacKenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 2015;100:82–91. doi: 10.1016/j.marpolbul.2015.09.026. PubMed DOI
Blackie EJ, Le Ru EC, Etchegoin PG. Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules. J. Am. Chem. Soc. 2009;131:14466–14472. doi: 10.1021/ja905319w. PubMed DOI
Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424:824–830. doi: 10.1038/nature01937. PubMed DOI
Xu G, et al. Surface-enhanced raman spectroscopy facilitates the detection of microplastics <1 μm in the environment. Environ. Sci. Technol. 2020;54:15594–15603. doi: 10.1021/acs.est.0c02317. PubMed DOI
Stewart ME, et al. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc. Natl. Acad. Sci. USA. 2006;103:17143–17148. doi: 10.1073/pnas.0606216103. PubMed DOI PMC
Kedzierski M, et al. A machine learning algorithm for high throughput identification of FTIR spectra: application on microplastics collected in the Mediterranean Sea. Chemosphere. 2019;234:242–251. doi: 10.1016/j.chemosphere.2019.05.113. PubMed DOI
Ballard Z, Brown C, Madni AM, Ozcan A. Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell. 2021;3:556–565. doi: 10.1038/s42256-021-00360-9. DOI
Leong YX, et al. Surface-Enhanced Raman Scattering (SERS) Taster: a machine-learning-driven multireceptor platform for multiplex profiling of wine flavors. Nano Lett. 2021;21:2642–2649. doi: 10.1021/acs.nanolett.1c00416. PubMed DOI
Guselnikova O, et al. Label-free surface-enhanced Raman spectroscopy with artificial neural network technique for recognition photoinduced DNA damage. Biosens. Bioelectron. 2019;145:111718. doi: 10.1016/j.bios.2019.111718. PubMed DOI
Vaswani A, et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017;30:5999–6009.
Chen J, et al. Transformer for one stop interpretable cell type annotation. Nat. Commun. 2023;14:223. doi: 10.1038/s41467-023-35923-4. PubMed DOI PMC
Saito S, Motokado T, Obata KJ, Takahashi K. Capillary force with a concave probe-tip for micromanipulation. Appl. Phys. Lett. 2005;87:1–3. doi: 10.1063/1.2139848. DOI
Fan Z, et al. Capillary forces between concave gripper and spherical particle for micro-objects gripping. Micromachines. 2021;12:285. doi: 10.3390/mi12030285. PubMed DOI PMC
Galinski H, et al. Light manipulation in metallic nanowire networks with functional connectivity. Adv. Opt. Mater. 2017;5:1600580. doi: 10.1002/adom.201600580. DOI
Lim H, et al. A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis. Nat. Protoc. 2020;15:2980–3008. doi: 10.1038/s41596-020-0359-8. PubMed DOI
Li C, et al. Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties. Nat. Commun. 2015;6:1–8. PubMed PMC
Lim H, et al. A mesopore-stimulated electromagnetic near-field: electrochemical synthesis of mesoporous copper films by micelle self-assembly. J. Mater. Chem. A. 2020;8:21016–21025. doi: 10.1039/D0TA06228F. DOI
Wang CB, Deo G, Wachs IE. Interaction of polycrystalline silver with oxygen, water, carbon dioxide, ethylene, and methanol: in situ raman and catalytic studies. J. Phys. Chem. B. 1999;103:5645–5656. doi: 10.1021/jp984363l. DOI
Beykal B, Herzberg M, Oren Y, Mauter MS. Influence of surface charge on the rate, extent, and structure of adsorbed bovine serum albumin to gold electrodes. J. Colloid Interface Sci. 2015;460:321–328. doi: 10.1016/j.jcis.2015.08.055. PubMed DOI
Hughes ZE, Wright LB, Walsh TR. Biomolecular adsorption at aqueous silver interfaces: First-principles calculations, polarizable force-field simulations, and comparisons with gold. Langmuir. 2013;29:13217–13229. doi: 10.1021/la402839q. PubMed DOI
Ahmad R, et al. Tailoring the surface chemistry of gold nanorods through Au-C/Ag-C covalent bonds using aryl diazonium salts. J. Phys. Chem. C. 2014;118:19098–19105. doi: 10.1021/jp504040d. DOI
Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Xiao CZ. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc. Natl. Acad. Sci. USA. 2009;106:8435–8440. doi: 10.1073/pnas.0902027106. PubMed DOI PMC
Magin CM, Cooper SP, Brennan AB. Non-toxic antifouling strategies. Mater. Today. 2010;13:36–44. doi: 10.1016/S1369-7021(10)70058-4. DOI
Wang BX, Liu MQ, Zhao CY, Fang X. Role of short-range order in manipulating light absorption in disordered media. JOSA B. 2018;35:504–513. doi: 10.1364/JOSAB.35.000504. DOI
Guselnikova O, et al. Surface filtration in mesoporous Au films decorated by Ag nanoparticles for solving SERS sensing small molecules in living cells. ACS Appl. Mater. Interfaces. 2022;14:41629–41639. doi: 10.1021/acsami.2c12804. PubMed DOI
Henzie J, Shuford KL, Kwak ES, Schatz GC, Odom TW. Manipulating the optical properties of pyramidal nanoparticle arrays. J. Phys. Chem. B. 2006;110:14028–14031. doi: 10.1021/jp063226i. PubMed DOI
He X, et al. Ultrasensitive detection of explosives via hydrophobic condensation effect on biomimetic SERS platforms. J. Mater. Chem. C. 2017;5:12384–12392. doi: 10.1039/C7TC04325B. DOI
Han Y, et al. Effect of oxidation on surface-enhanced raman scattering activity of silver nanoparticles: A quantitative correlation. Anal. Chem. 2011;83:5873–5880. doi: 10.1021/ac2005839. PubMed DOI
Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci. Adv. 2017;3:e1700782. doi: 10.1126/sciadv.1700782. PubMed DOI PMC
Barrows APW, Neumann CA, Berger ML, Shaw SD. Grab vs. neuston tow net: a microplastic sampling performance comparison and possible advances in the field. Anal. Methods. 2017;9:1446–1453. doi: 10.1039/C6AY02387H. DOI
Lindquist NC, Brolo AG. Ultra-high-speed dynamics in surface-enhanced Raman scattering. J. Phys. Chem. C. 2021;125:7523–7532. doi: 10.1021/acs.jpcc.0c11150. DOI
Zhang W, et al. A deep one-dimensional convolutional neural network for microplastics classification using Raman spectroscopy. Vib. Spectrosc. 2023;124:103487. doi: 10.1016/j.vibspec.2022.103487. DOI
Paul A, Wander L, Becker R, Goedecke C, Braun U. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil. Environ. Sci. Pollut. Res. 2019;26:7364–7374. doi: 10.1007/s11356-018-2180-2. PubMed DOI
de Back HM, Vargas Junior EC, Alarcon OE, Pottmaier D. Training and evaluating machine learning algorithms for ocean microplastics classification through vibrational spectroscopy. Chemosphere. 2022;287:131903. doi: 10.1016/j.chemosphere.2021.131903. PubMed DOI
Soares-Filho W, Manoel De Seixas J, Pereira Calôba L. Averaging spectra to improve the classification of the noise radiated by ships using neural networks. Proc. - Brazilian Symp. Neural Netw. 2000;1:156–161. doi: 10.1109/SBRN.2000.889731. DOI
Skvortsova A, et al. SERS and advanced chemometrics – utilization of Siamese neural network for picomolar identification of beta-lactam antibiotics resistance gene fragment. Anal. Chim. Acta. 2022;1192:339373. doi: 10.1016/j.aca.2021.339373. PubMed DOI
Yan X, Cao Z, Murphy A, Qiao Y. An ensemble machine learning method for microplastics identification with FTIR spectrum. J. Environ. Chem. Eng. 2022;10:108130. doi: 10.1016/j.jece.2022.108130. DOI
Ren L, et al. Identification of microplastics using a convolutional neural network based on micro-Raman spectroscopy. Talanta. 2023;260:124611. doi: 10.1016/j.talanta.2023.124611. PubMed DOI
Isobe A, Iwasaki S, Uchida K, Tokai T. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-08316-9. PubMed DOI PMC
Suzuki S, Sawada T, Serizawa T. Identification of water-soluble polymers through discrimination of multiple optical signals from a single peptide sensor. ACS Appl. Mater. Interfaces. 2021;13:55978–55987. doi: 10.1021/acsami.1c11794. PubMed DOI
Huang S, et al. Recent advances in sampling and sample preparation for effect-directed environmental analysis. TrAC Trends Anal. Chem. 2022;154:116654. doi: 10.1016/j.trac.2022.116654. DOI
Liu P, et al. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: adsorption mechanism and role of aging intermediates. J. Hazard. Mater. 2020;384:121193. doi: 10.1016/j.jhazmat.2019.121193. PubMed DOI
Pernetti M, Di Palma L. Experimental evaluation of inhibition effects of saline wastewater on activated sludge. Environ. Technol. 2010;26:695–704. doi: 10.1080/09593330.2001.9619509. PubMed DOI
Westgate PJ, Park C. Evaluation of proteins and organic nitrogen in wastewater treatment effluents. Environ. Sci. Technol. 2010;44:5352–5357. doi: 10.1021/es100244s. PubMed DOI
Rodrigues A, Brito A, Janknecht P, Proena MF, Nogueira R. Quantification of humic acids in surface water: effects of divalent cations, pH, and filtration. J. Environ. Monit. 2009;11:377–382. doi: 10.1039/B811942B. PubMed DOI
Chaisrikhwun B, Ekgasit S, Pienpinijtham P. Size-independent quantification of nanoplastics in various aqueous media using surfaced-enhanced Raman scattering. J. Hazard. Mater. 2023;442:130046. doi: 10.1016/j.jhazmat.2022.130046. PubMed DOI
Lv L, et al. In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. Sci. Total Environ. 2020;728:138449. doi: 10.1016/j.scitotenv.2020.138449. PubMed DOI
Kim JY, et al. 3D plasmonic gold nanopocket structure for SERS machine learning-based microplastic detection. Adv. Funct. Mater. 2023;34:2307584. doi: 10.1002/adfm.202307584. DOI
Picó Y, Barceló D. Pyrolysis gas chromatography-mass spectrometry in environmental analysis: Focus on organic matter and microplastics. TrAC Trends Anal. Chem. 2020;130:115964. doi: 10.1016/j.trac.2020.115964. DOI
Saccone MA, Gallivan RA, Narita K, Yee DW, Greer JR. Additive manufacturing of micro-architected metals via hydrogel infusion. Nature. 2022;612:685–690. doi: 10.1038/s41586-022-05433-2. PubMed DOI PMC
Han X-L, et al. Deep learning based approach for automated characterization of large marine microplastic particles. Mar. Environ. Res. 2023;183:105829. doi: 10.1016/j.marenvres.2022.105829. PubMed DOI
Huang H, et al. Proceeding the categorization of microplastics through deep learning-based image segmentation. Sci. Total Environ. 2023;896:165308. doi: 10.1016/j.scitotenv.2023.165308. PubMed DOI
OpenRAMAN. https://www.open-raman.org/ (2024).
Leusch FDL, Ziajahromi S. Converting mg/L to Particles/L: reconciling the occurrence and toxicity literature on microplastics. Environ. Sci. Technol. 2021;55:11470–11472. doi: 10.1021/acs.est.1c04093. PubMed DOI
Lim H, et al. Synthesis of uniformly sized mesoporous silver films and their SERS application. J. Phys. Chem. C. 2020;124:23730–23737. doi: 10.1021/acs.jpcc.0c07234. DOI
Guselnikova O, et al. SERS platform for detection of lipids and disease markers prepared using modification of plasmonic-active gold gratings by lipophilic moieties. Sens. Actuat. B Chem. 2018;265:182–192. doi: 10.1016/j.snb.2018.03.016. DOI
Park H, et al. Mesoporous gold–silver alloy films towards amplification-free ultra-sensitive microRNA detection. J. Mater. Chem. B. 2020;8:9512–9523. doi: 10.1039/D0TB02003F. PubMed DOI
Fang J, et al. A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures. Nature. 2018;9:1–9. PubMed PMC
Skvortsova A, et al. SERS-CNN approach for non-invasive and non-destructive monitoring of stem cell growth on a universal substrate through an analysis of the cultivation medium. Sens. Actuat. B Chem. 2023;375:132812. doi: 10.1016/j.snb.2022.132812. DOI
Li, X., Bu, Y., Xie, J., Liang, J. & Xu, J. Determine the masses and ages of red giant branch stars from low-resolution LAMOST Spectra Using DenseNet. arXiv10.48550/arXiv.2106.04945 (2021).
Li L, Jamieson K, Rostamizadeh A, Talwalkar A. Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 2018;18:1–52.
Trelin, A. Microplastics-raman-spectra. Kagglehttps://www.kaggle.com/datasets/andriitrelin/microplastics-raman-spectra (2023).
Baek SJ, Park A, Ahn YJ, Choo J. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst. 2014;140:250–257. doi: 10.1039/C4AN01061B. PubMed DOI
Bestuzheva, K. et al. The SCIP Optimization Suite 8.0. arXiv10.48550/arXiv.2112.08872 (2021).
Foret, P., Kleiner, A., Mobahi, H. & Neyshabur, B. Sharpness-Aware Minimization for Efficiently Improving Generalization. arXiv10.48550/arXiv.2010.01412 (2020).
Loshchilov, I. & Hutter, F. Decoupled Weight Decay Regularization. 7th Int. Conf. Learn. Represent. ICLR 2019 (2017).
Trelin, A. Trel725/SpecATNet: First public release (1.0). Zenodo10.5281/ZENODO.10571618 (2024).
Bujacz A. Structures of bovine, equine and leporine serum albumin. Acta Cryst. 2012;D68:1278–1289. PubMed
Bujacz, A. & Bujacz, G. Crystal Structure of Bovine Serum Albumin, PDB ID: 4F5S. 10.2210/pdb4F5S/pdb (2012).