Haplotype Detection from Next-Generation Sequencing in High-Ploidy-Level Species: 45S rDNA Gene Copies in the Hexaploid Spartina maritima
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26530424
PubMed Central
PMC4704722
DOI
10.1534/g3.115.023242
PII: g3.115.023242
Knihovny.cz E-zdroje
- Klíčová slova
- bioinformatics, duplication, paralogy, poaceae, polyploidy,
- MeSH
- anotace sekvence MeSH
- fylogeneze * MeSH
- genom rostlinný MeSH
- genomika metody MeSH
- haplotypy * MeSH
- hybridizace in situ fluorescenční MeSH
- jednonukleotidový polymorfismus MeSH
- lipnicovité klasifikace genetika MeSH
- otevřené čtecí rámce MeSH
- polyploidie * MeSH
- reprodukovatelnost výsledků MeSH
- ribozomální DNA MeSH
- RNA ribozomální genetika MeSH
- rostlinné geny MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
- RNA ribozomální MeSH
- RNA, ribosomal, 45S MeSH Prohlížeč
Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5'-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies.
Zobrazit více v PubMed
Ainouche M. L., Chelaifa H., Ferreira de Carvalho J., Bellot S., Ainouche A. K., et al. , 2012. Polyploid evolution in Spartina: Dealing with highly redundant hybrid genomes, pp. 225–243 in Polyploidy and Genome Evolution edited by E. Douglas, Springer, Berlin, Heidelberg.
Ainouche M. L., Fortune P. M., Salmon A., Parisod C., Grandbastien M.-A., et al. , 2008. Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol. Invasions 11: 1159–1173.
Akhunova A. R., Matniyazov R. T., Liang H., Akhunov E. D., 2010. Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics 11: 505. PubMed PMC
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., et al. , 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402. PubMed PMC
Álvarez I., Wendel J. F., 2003. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29: 417–434. PubMed
Badaeva E. D., Friebe B., Gill B. S., 1996. Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome 39: 1150–1158. PubMed
Barker R. F., Harberd N. P., Jarvis M. G., Flavell R. B., 1988. Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. J. Mol. Biol. 201: 1–17. PubMed
Baumel A., Ainouche M. L., Levasseur J. E., 2001. Molecular investigations in populations of Spartina anglica CE Hubbard (Poaceae) invading coastal Brittany (France). Mol. Ecol. 10: 1689–1701. PubMed
Baumel A., Ainouche M. L., Bayer R. J., Ainouche A. K., Misset M. T., 2002. molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Mol. Phylogenet. Evol. 22: 303–314. PubMed
Bena G., Jubier M.-F., Olivieri I., Lejeune B., 1998. Ribosomal external and internal transcribed spacers: combined use in the phylogenetic analysis of Medicago (Leguminosae). J. Mol. Evol. 46: 299–306. PubMed
Chalhoub B., Denoeud F., Liu S., Parkin I. A. P., Tang H., et al. , 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345: 950–953. PubMed
Chang K.-D., Fang S.-A., Chang F.-C., Chung M.-C., 2010. Chromosomal conservation and sequence diversity of ribosomal RNA genes of two distant Oryza species. Genomics 96: 181–190. PubMed
Combes M.-C., Cenci A., Baraille H., Bertrand B., Lashermes P., 2011. Homeologous gene expression in response to growing temperature in a recent allopolyploid (Coffea arabica L.). J. Hered. 103: 36–46. PubMed
Duchemin W., Dupont P.-Y., Campbell M. A., Ganley A. R., Cox M. P., 2014. HyLiTE: accurate and flexible analysis of gene expression in hybrid and allopolyploid species. BMC Bioinformatics 16: 8. PubMed PMC
El-Metwally S., Ouda O. M., Helmy M., 2014. Next generation sequencing technologies and challenges in sequence assembly, Springer, New York, NY.
El-Twab M. H. A., 2007. Physical mapping of the 45S rDNA on the chromosomes of Triticum turgidum and T. aestivum using fluorescence in situ hybridization for chromosome ancestors. Arab J. Biotechnol. 10: 69–80.
Fan H., Yakura K., Miyanishi M., Sugita M., Sugiura M., 1995. In vitro transcription of plant RNA polymerase I-dependent rRNA genes is species-specific. Plant J. 8: 295–298. PubMed
Flagel L., Udall J., Nettleton D., Wendel J., 2008. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol. 6: 16. PubMed PMC
Fortune P. M., Schierenbeck K. A., Ainouche A. K., Jacquemin J., Wendel J. F., et al. , 2007. Evolutionary dynamics of Waxy and the origin of hexaploid Spartina species (Poaceae). Mol. Phylogenet. Evol. 43: 1040–1055. PubMed
Fortune P. M., Schierenbeck K., Ayres D., Bortolus A., Catrice O., et al. , 2008. The enigmatic invasive Spartina densiflora : A history of hybridizations in a polyploidy context. Mol. Ecol. 17: 4304–4316. PubMed
Foucaud, 1897 Un Spartina inédit. Ann. Soc. Sci. Nat. Char. Inf. 32: 220–222.
Frankowski J., Bastrop R., 2010. Identification of Anguilla anguilla (L.) and Anguilla rostrata (Le Sueur) and their hybrids based on a diagnostic single nucleotide polymorphism in nuclear 18S rDNA. Mol. Ecol. Resour. 10: 173–176. PubMed
Gerlach W. L., Bedbrook J. R., 1979. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7: 1869–1885. PubMed PMC
Groves, H., and J. Groves, 1880 Spartina x townsendii Nobis. Rep. Bot. Soc. Exch. club Br. Id. 1–37.
Hancock J. M., Dover G. A., 1988. Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs. Mol. Biol. Evol. 5: 377–391. PubMed
Ilut D. C., Coate J. E., Luciano A. K., Owens T. G., May G. D., et al. , 2012. A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-seq in plant species. Am. J. Bot. 99: 383–396. PubMed
Jiao Y., Wickett N. J., Ayyampalayam S., Chanderbali A. S., Landherr L., et al. , 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100. PubMed
Katoh K., Toh H., 2010. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26: 1899–1900. PubMed PMC
Koh J., Soltis P. S., Soltis D. E., 2010. Homeolog loss and expression changes in natural populations of the recently and repeatedly formed allotetraploid Tragopogon mirus (Asteraceae). BMC Genomics 11: 97. PubMed PMC
Kovarik A., 2005. Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169: 931–944. PubMed PMC
Kovarik A., Dadejova M., Lim Y. K., Chase M. W., Clarkson J. J., et al. , 2008. Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann. Bot-London 101: 815–823. PubMed PMC
Kuzoff R. K., Sweere A. J., Soltis D. E., Soltis P. S., Zimmer E. A., 1998. The phylogenetic potential of entire 26S rDNA sequences in plants. Mol. Biol. Evol. 15: 251–263. PubMed
Langmead B., Salzberg S. L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357–359. PubMed PMC
Leitch I. J., Bennett M. D., 2004. Genome downsizing in polyploid plants. Biol. J. Linn. Soc. Lond. 82: 651–663.
Levy A. A., Feldman M., 2002. The impact of polyploidy on grass genome evolution. Plant Physiol. 130: 1587–1593. PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., et al. , 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079. PubMed PMC
Liu B., Davis T. M., 2011. Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae). BMC Plant Biol. 11: 157. PubMed PMC
Mable B. K., 2004. “Why polyploidy is rarer in animals than in plants”: myths and mechanisms. Biol. J. Linn. Soc. Lond. 82: 453–466.
Mahé F., Pascual H., Coriton O., Huteau V., Navarro Perris A., et al. , 2010. New data and phylogenetic placement of the enigmatic Old World lupin: Lupinus mariae-josephi H. Pascual. Genet. Resour. Crop Ev. 58: 101–114.
Maluszynska J., Heslop-Harrison J. S., 1993. Physical mapping of rDNA loci in Brassica species. Genome 36: 774–781. PubMed
Marchant C., 1968. Evolution in Spartina (Gramineae). II. Chromosomes, basic relationships and the problem of Spartina x townsendii agg. Biol. J. Linn. Soc. Lond. 60: 381–409.
Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., et al. , 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380. PubMed PMC
Matyášek R., Renny-Byfield S., Fulneček J., Macas J., Grandbastien M.-A., et al. , 2012. Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genomics 13: 722. PubMed PMC
Mentewab A. B., Jacobsen M. J., Flowers R. A., 2011. Incomplete homogenization of 18S ribosomal DNA coding regions in Arabidopsis thaliana. BMC Res. Notes 4: 93. PubMed PMC
Metzker M. L., 2009. Sequencing technologies—the next generation. Nat. Rev. Genet. 11: 31–46. PubMed
Milne I., Bayer M., Cardle L., Shaw P., Stephen G., et al. , 2009. Tablet–next generation sequence assembly visualization. Bioinformatics 26: 401–402. PubMed PMC
Nei M., Rooney A. P., 2005. Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 39: 121. PubMed PMC
Novák P., Neumann P., Macas J., 2010. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11: 378. PubMed PMC
Ohno S., 1970. Evolution by Gene Duplication. Springer-Verlag, New York.
Page J. T., Gingle A. R., Udall J. A., 2013a PolyCat: A resource for genome categorization of sequencing reads from allopolyploid organisms. G3 (Bethesda) 3: 517–525. PubMed PMC
Page J. T., Huynh M. D., Liechty Z. S., Grupp K., Stelly D., et al. , 2013b Insights into the evolution of cotton diploids and polyploids from whole-genome re-sequencing. G3 (Bethesda) 3: 1809–1818. PubMed PMC
Page J. T., Liechty Z. S., Huynh M. D., Udall J. A., 2014. BamBam: genome sequence analysis tools for biologists. BMC Res. Notes 7: 829. PubMed PMC
Peralta M., Combes M.-C., Cenci A., Lashermes P., Dereeper A., 2013. SNiPloid: A utility to exploit high-throughput SNP data derived from RNA-Seq in allopolyploid species. Int. J. Plant Genomics 2013: 1–6. PubMed PMC
Peterson P. M., Romaschenko K., Arrieta Y. H., Saarela J. M., 2014. A molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae). Taxon 63: 1212–1243.
Poczai P., Hyvönen J., 2010. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Mol. Biol. Rep. 37: 1897–1912. PubMed
Prokopowich C. D., Gregory T. R., Crease T. J., 2003. The correlation between rDNA copy number and genome size in eukaryotes. Genome 46: 48–50. PubMed
Ramsey J., Schemske D. W., 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29: 467–501.
Rogers, S. O., and A. J. Bendich. 1987 Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9:509:520. PubMed
Rosato M., Castro M., Rossello J. A., 2008. Relationships of the woody Medicago species (Section Dendrotelis) assessed by molecular cytogenetic analyses. Ann. Bot-London 102: 15–22. PubMed PMC
Rousseau-Gueutin M., Bellot S., Martin G. E., Boutte J., Chelaifa H., et al. , 2015. The chloroplast genome of the hexaploid Spartina maritima (Poaceae, Chloridoideae): Comparative analyses and molecular dating. Mol. Phylogenet. Evol. 93: 5–16. PubMed
Rozen S., Skaletsky H., 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365–386. PubMed
Salmon A., Flagel L., Ying B., Udall J. A., Wendel J. F., 2010. Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol. 186: 123–134. PubMed
Schaal B. A., Learn G. H., 1988. Ribosomal DNA variation within and among plant populations. Ann. Mo. Bot. Gard. 75: 1207–1216.
Seo J. H., Bae H. G., Park D. H., Kim B. S., Lee J. W., et al. , 2013. Sequence polymorphisms in ribosomal RNA genes and variations in chromosomal loci of Oenothera odorata and O. laciniata. Genes Genomics 35: 117–124.
Snowdon R. J., Köhler W., Köhler A., 1997. Chromosomal localization and characterization of rDNA loci in the Brassica A and C genomes. Genome 40: 582–587. PubMed
Soltis D. E., Albert V. A., Leebens-Mack J., Bell C. D., Paterson A. H., et al. , 2009. Polyploidy and angiosperm diversification. Am. J. Bot. 96: 336–348. PubMed
Soreng R. J., Peterson P. M., Romaschenko K., Davidse G., Zuloaga F. O., et al. , 2015. A worldwide phylogenetic classification of the Poaceae (Gramineae): Phylogenetic classification of the grasses. J. Syst. Evol. 53: 117–137.
Strong D. R., Ayres D. R., 2013. Ecological and evolutionary misadventures of Spartina. Annu. Rev. Ecol. Evol. Syst. 44: 389–410.
Tennessen J. A., Govindarajulu R., Ashman T.-L., Liston A., 2014. Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense targeted capture linkage maps. Genome Biol. Evol. 6: 3295–3313. PubMed PMC
Toloczyki C., Feix G., 1986. Occurrence of 9 homologous repeat units in the external spacer region of a nuclear maize rRNA gene unit. Nucleic Acids Res. 14: 4969–4986. PubMed PMC
Udall J. A., Swanson J. M., Haller K., Rapp R. A., Sparks M. E., et al. , 2006. A global assembly of cotton ESTs. Genome Res. 16: 441–450. PubMed PMC
Van de Peer Y., Maere S., Meyer A., 2009. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10: 725–732. PubMed
Volkov R., Kostishin S., Ehrendorfer F., Schweizer D., 1996. Molecular organization and evolution of the external transcribed rDNA spacer region in two diploid relatives of Nicotiana tabacum (Solanaceae). Plant Syst. Evol. 201: 117–129.
Volkov R. A., Borisjuk N. V., Panchuk I. I., Schweizer D., Hemleben V., 1999. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Mol. Biol. Evol. 16: 311–320. PubMed
Waterhouse A. M., Procter J. B., Martin D. M. A., Clamp M., Barton G. J., 2009. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191. PubMed PMC
Wendel J. F., 2000. Genome evolution in polyploids. Plant Mol. Niol. 42: 225–249. PubMed
Wendel J. F., Schnabel A., Seelanan T., 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. USA 92: 280–284. PubMed PMC
Zentgraf U., Velasco R., Hemleben V., 1998. Different Transcriptional Activities in the Nucleus, pp. 131–168 in Progress in Botany, edited by H.-D. Behnke K., Esser J. W., Kadereit U., Lüttge, Runge M. Springer, Berlin.