Characterization of Electrospray Ionization Complexity in Untargeted Metabolomic Studies
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38917347
PubMed Central
PMC11238156
DOI
10.1021/acs.analchem.4c00966
Knihovny.cz E-resources
- MeSH
- Chromatography, Liquid MeSH
- Spectrometry, Mass, Electrospray Ionization * methods MeSH
- Humans MeSH
- Metabolomics * methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The annotation of metabolites detected in LC-MS-based untargeted metabolomics studies routinely applies accurate m/z of the intact metabolite (MS1) as well as chromatographic retention time and MS/MS data. Electrospray ionization and transfer of ions through the mass spectrometer can result in the generation of multiple "features" derived from the same metabolite with different m/z values but the same retention time. The complexity of the different charged and neutral adducts, in-source fragments, and charge states has not been previously and deeply characterized. In this paper, we report the first large-scale characterization using publicly available data sets derived from different research groups, instrument manufacturers, LC assays, sample types, and ion modes. 271 m/z differences relating to different metabolite feature pairs were reported, and 209 were annotated. The results show a wide range of different features being observed with only a core 32 m/z differences reported in >50% of the data sets investigated. There were no patterns reporting specific m/z differences that were observed in relation to ion mode, instrument manufacturer, LC assay type, and mammalian sample type, although some m/z differences were related to study group (mammal, microbe, plant) and mobile phase composition. The results provide the metabolomics community with recommendations of adducts, in-source fragments, and charge states to apply in metabolite annotation workflows.
See more in PubMed
Bills B.; Barshop W. D.; Sharma S.; Canterbury J.; Robitaille A. M.; Goodwin M.; Senko M. W.; Zabrouskov V. Novel Real-Time Library Search Driven Data Acquisition Strategy for Identification and Characterization of Metabolites. Anal. Chem. 2022, 94 (9), 3749–3755. 10.1021/acs.analchem.1c04336. PubMed DOI
Vaniya A.; Fiehn O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Analyt. Chem. 2015, 69, 52–61. 10.1016/j.trac.2015.04.002. PubMed DOI PMC
Lerner R.; Baker D.; Schwitter C.; Neuhaus S.; Hauptmann T.; Post J. M.; Kramer S.; Bindila L. Four-dimensional trapped ion mobility spectrometry lipidomics for high throughput clinical profiling of human blood samples. Nat. Commun. 2023, 14 (1), 937.10.1038/s41467-023-36520-1. PubMed DOI PMC
May J. C.; McLean J. A. Integrating ion mobility into comprehensive multidimensional metabolomics workflows: critical considerations. Metabolomics 2022, 18 (12), 104.10.1007/s11306-022-01961-0. PubMed DOI
Phapale P.; Palmer A.; Gathungu R. M.; Kale D.; Brügger B.; Alexandrov T. Public LC-Orbitrap Tandem Mass Spectral Library for Metabolite Identification. J. Proteome Res. 2021, 20 (4), 2089–2097. 10.1021/acs.jproteome.0c00930. PubMed DOI
Frainay C.; Schymanski E. L.; Neumann S.; Merlet B.; Salek R. M.; Jourdan F.; Yanes O. Mind the Gap: Mapping Mass Spectral Databases in Genome-Scale Metabolic Networks Reveals Poorly Covered Areas. Metabolites. 2018, 8 (3), 51.10.3390/metabo8030051. PubMed DOI PMC
Bonini P.; Kind T.; Tsugawa H.; Barupal D. K.; Fiehn O. Retip: Retention Time Prediction for Compound Annotation in Untargeted Metabolomics. Anal. Chem. 2020, 92 (11), 7515–7522. 10.1021/acs.analchem.9b05765. PubMed DOI PMC
Domingo-Almenara X.; Guijas C.; Billings E.; Montenegro-Burke J. R.; Uritboonthai W.; Aisporna A. E.; Chen E.; Benton H. P.; Siuzdak G. The METLIN small molecule dataset for machine learning-based retention time prediction. Nat. Commun. 2019, 10 (1), 5811.10.1038/s41467-019-13680-7. PubMed DOI PMC
Wang F.; Liigand J.; Tian S.; Arndt D.; Greiner R.; Wishart D. S. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021, 93 (34), 11692–11700. 10.1021/acs.analchem.1c01465. PubMed DOI PMC
Sugawa H.; Kind T.; Nakabayashi R.; Yukihira D.; Tanaka W.; Cajka T.; Saito K.; Fiehn O.; Arita M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 2016, 88 (16), 7946–7958. 10.1021/acs.analchem.6b00770. PubMed DOI PMC
Ruttkies C.; Schymanski E. L.; Wolf S.; Hollender J.; Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminf. 2016, 8, 3.10.1186/s13321-016-0115-9. PubMed DOI PMC
Schmid R.; Petras D.; Nothias L. F.; Wang M.; Aron A. T.; Jagels A.; Tsugawa H.; Rainer J.; Garcia-Aloy M.; Dührkop K.; Korf A.; Pluskal T.; Kameník Z.; Jarmusch A. K.; Caraballo-Rodríguez A. M.; Weldon K. C.; Nothias-Esposito M.; Aksenov A. A.; Bauermeister A.; Orio A. A.; Grundmann C. O.; Vargas F.; Koester I.; Gauglitz J. M.; Gentry E. C.; Hövelmann Y.; Kalinina S. A.; Pendergraft M. A.; Panitchpakdi M.; Tehan R.; Le Gouellec A.; Aleti G.; Russo H. M.; Arndt B.; Hübner F.; Hayen H.; Zhi H.; Raffatellu M.; Prather K. A.; Aluwihare L. I.; Böcker S.; McPhail K. L.; Humpf H. U.; Karst U.; Dorrestein P. C. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nat. Commun. 2021, 12 (1), 3832.10.1038/s41467-021-23953-9. PubMed DOI PMC
Aron A. T.; Gentry E. C.; McPhail K. L.; Nothias L. F.; Nothias-Esposito M.; Bouslimani A.; Petras D.; Gauglitz J. M.; Sikora N.; Vargas F.; van der Hooft J. J. J.; Ernst M.; Kang K. B.; Aceves C. M.; Caraballo-Rodríguez A. M.; Koester I.; Weldon K. C.; Bertrand S.; Roullier C.; Sun K.; Tehan R. M.; Boya P C. A.; Christian M. H.; Gutiérrez M.; Ulloa A. M.; Mora J. A. T.; Mojica-Flores R.; Lakey-Beitia J.; Vásquez-Chaves V.; Zhang Y.; Calderón A. I.; Tayler N.; Keyzers R. A.; Tugizimana F.; Ndlovu N.; Aksenov A. A.; Jarmusch A. K.; Schmid R.; Truman A. W.; Bandeira N.; Wang M.; Dorrestein P. C. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15 (6), 1954–1991. 10.1038/s41596-020-0317-5. PubMed DOI
Bittremieux W.; Wang M.; Dorrestein P. C. The critical role that spectral libraries play in capturing the metabolomics community knowledge. Metabolomics 2022, 18 (12), 94.10.1007/s11306-022-01947-y. PubMed DOI PMC
Wishart D. S.; Guo A.; Oler E.; Wang F.; Anjum A.; Peters H.; Dizon R.; Sayeeda Z.; Tian S.; Lee B. L.; Berjanskii M.; Mah R.; Yamamoto M.; Jovel J.; Torres-Calzada C.; Hiebert-Giesbrecht M.; Lui V. W.; Varshavi D.; Varshavi D.; Allen D.; Arndt D.; Khetarpal N.; Sivakumaran A.; Harford K.; Sanford S.; Yee K.; Cao X.; Budinski Z.; Liigand J.; Zhang L.; Zheng J.; Mandal R.; Karu N.; Dambrova M.; Schiöth H. B.; Greiner R.; Gautam V. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50 (D1), D622–D631. 10.1093/nar/gkab1062. PubMed DOI PMC
Kim S.; Chen J.; Cheng T.; Gindulyte A.; He J.; He S.; Li Q.; Shoemaker B. A.; Thiessen P. A.; Yu B.; Zaslavsky L.; Zhang J.; Bolton E. E. PubChem 2023 update. Nucleic Acids Res. 2023, 51 (D1), D1373–D1380. 10.1093/nar/gkac956. PubMed DOI PMC
HighChem LLC, 2013, mzCloud, https://www.mzcloud.org/.
Brown M.; Wedge D. C.; Goodacre R.; Kell D. B.; Baker P. N.; Kenny L. C.; Mamas M. A.; Neyses L.; Dunn W. B. Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics. 2011, 27 (8), 1108–12. 10.1093/bioinformatics/btr079. PubMed DOI PMC
Sumner L. W.; Amberg A.; Barrett D.; Beale M. H.; Beger R.; Daykin C. A.; Fan T. W.; Fiehn O.; Goodacre R.; Griffin J. L.; Hankemeier T.; Hardy N.; Harnly J.; Higashi R.; Kopka J.; Lane A. N.; Lindon J. C.; Marriott P.; Nicholls A. W.; Reily M. D.; Thaden J. J.; Viant M. R. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007, 3 (3), 211–221. 10.1007/s11306-007-0082-2. PubMed DOI PMC
Brown M.; Dunn W. B.; Dobson P.; Patel Y.; Winder C. L.; Francis-McIntyre S.; Begley P.; Carroll K.; Broadhurst D.; Tseng A.; Swainston N.; Spasic I.; Goodacre R.; Kell D. B. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst. 2009, 134 (7), 1322–32. 10.1039/b901179j. PubMed DOI
Mahieu N. G.; Patti G. J. Systems-Level Annotation of a Metabolomics Data Set Reduces 25 000 Features to Fewer than 1000 Unique Metabolites. Anal. Chem. 2017, 89 (19), 10397–10406. 10.1021/acs.analchem.7b02380. PubMed DOI PMC
Kachman M.; Habra H.; Duren W.; Wigginton J.; Sajjakulnukit P.; Michailidis G.; Burant C.; Karnovsky A. Deep annotation of untargeted LC-MS metabolomics data with Binner. Bioinformatics. 2020, 36 (6), 1801–1806. 10.1093/bioinformatics/btz798. PubMed DOI PMC
DeFelice B. C.; Mehta S. S.; Samra S.; Čajka T.; Wancewicz B.; Fahrmann J. F.; Fiehn O. Mass Spectral Feature List Optimizer (MS-FLO): A Tool To Minimize False Positive Peak Reports in Untargeted Liquid Chromatography-Mass Spectroscopy (LC-MS) Data Processing. Anal. Chem. 2017, 89 (6), 3250–3255. 10.1021/acs.analchem.6b04372. PubMed DOI PMC
Yurekten O.; Payne T.; Tejera N.; Amaladoss F. X.; Martin C.; Williams M.; O’Donovan C. MetaboLights: open data repository for metabolomics. Nucleic Acids Res. 2023, 52, D640–D646. 10.1093/nar/gkad1045. PubMed DOI PMC
Sud M.; Fahy E.; Cotter D.; Azam K.; Vadivelu I.; Burant C.; Edison A.; Fiehn O.; Higashi R.; Nair K. S.; Sumner S.; Subramaniam S. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 2016, 44 (D1), D463–70. 10.1093/nar/gkv1042. PubMed DOI PMC
EMBL-EBI, 2016, MetaboLights, https://www.ebi.ac.uk/metabolights/.
UC San Diego, 2016, Metabolomics Workbench, https://www.metabolomicsworkbench.org/.
Kanehisa M.; Furumichi M.; Sato Y.; Kawashima M.; Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51 (D1), D587–D592. 10.1093/nar/gkac963. PubMed DOI PMC
Patiny L.; Borel A. ChemCalc: a building block for tomorrow’s chemical infrastructure. J. Chem. Inf. Model. 2013, 1223.10.1021/ci300563h. PubMed DOI
Pang Z.; Chong J.; Zhou G.; de Lima Morais D. A.; Chang L.; Barrette M.; Gauthier C.; Jacques PÉ; Li S.; Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49 (W1), W388–W396. 10.1093/nar/gkab382. PubMed DOI PMC
Kanehisa Laboratories, 2024, KEGG: Kyoto Encyclopedia of Genes and Genomes, https://www.genome.jp/kegg/. PubMed PMC