Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 GM107550
NIGMS NIH HHS - United States
T32 AT010131
NCCIH NIH HHS - United States
P41 GM103484
NIGMS NIH HHS - United States
R01 AI126277
NIAID NIH HHS - United States
R01 AI145325
NIAID NIH HHS - United States
R01 GM132649
NIGMS NIH HHS - United States
R01 AI114625
NIAID NIH HHS - United States
R37 AI126277
NIAID NIH HHS - United States
R03 CA211211
NCI NIH HHS - United States
R56 AI114625
NIAID NIH HHS - United States
PubMed
34158495
PubMed Central
PMC8219731
DOI
10.1038/s41467-021-23953-9
PII: 10.1038/s41467-021-23953-9
Knihovny.cz E-zdroje
- MeSH
- hmotnostní spektrometrie metody MeSH
- internet MeSH
- ionty chemie metabolismus MeSH
- metabolické sítě a dráhy * MeSH
- metabolomika metody MeSH
- molekulární struktura MeSH
- reprodukovatelnost výsledků MeSH
- software MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- ionty MeSH
Molecular networking connects mass spectra of molecules based on the similarity of their fragmentation patterns. However, during ionization, molecules commonly form multiple ion species with different fragmentation behavior. As a result, the fragmentation spectra of these ion species often remain unconnected in tandem mass spectrometry-based molecular networks, leading to redundant and disconnected sub-networks of the same compound classes. To overcome this bottleneck, we develop Ion Identity Molecular Networking (IIMN) that integrates chromatographic peak shape correlation analysis into molecular networks to connect and collapse different ion species of the same molecule. The new feature relationships improve network connectivity for structurally related molecules, can be used to reveal unknown ion-ligand complexes, enhance annotation within molecular networks, and facilitate the expansion of spectral reference libraries. IIMN is integrated into various open source feature finding tools and the GNPS environment. Moreover, IIMN-based spectral libraries with a broad coverage of ion species are publicly available.
Chair for Bioinformatics Friedrich Schiller University Jena Germany
Chiba University UC San Diego Center for Mucosal Immunology Allergy and Vaccines La Jolla CA USA
Department of Pharmaceutical Sciences College of Pharmacy Oregon State University Corvallis OR USA
Department of Psychiatry University of California San Diego San Diego CA USA
Institute of Biomedical Sciences Universidade de São Paulo São Paulo SP Brazil
Institute of Food Chemistry University of Münster Münster Germany
Institute of Inorganic and Analytical Chemistry University of Münster Münster Germany
Institute of Microbiology Czech Academy of Sciences Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
IRNASUS Universidad Católica de Córdoba CONICET Facultad de Ciencias Agropecuarias Córdoba Argentina
NuBBE Institute of Chemistry São Paulo State University Araraquara SP Brazil
RIKEN Center for Integrative Medical Sciences Yokohama Kanagawa Japan
RIKEN Center for Sustainable Resource Science Yokohama Kanagawa Japan
Scripps Institution of Oceanography University of California San Diego La Jolla CA USA
Univ Grenoble Alpes CNRS Grenoble INP CHU Grenoble Alpes TIMC IMAG Grenoble France
Zobrazit více v PubMed
Watrous J, et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl Acad. Sci. USA. 2012;109:E1743–E1752. doi: 10.1073/pnas.1203689109. PubMed DOI PMC
Wang M, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC
Quinn RA, et al. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol. Sci. 2017;38:143–154. doi: 10.1016/j.tips.2016.10.011. PubMed DOI
Fox Ramos AE, Evanno L, Poupon E, Champy P, Beniddir MA. Natural products targeting strategies involving molecular networking: different manners, one goal. Nat. Prod. Rep. 2019;36:960–980. doi: 10.1039/C9NP00006B. PubMed DOI
Aron AT, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020;15:1954–1991. doi: 10.1038/s41596-020-0317-5. PubMed DOI
da Silva RR, et al. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput. Biol. 2018;14:e1006089. doi: 10.1371/journal.pcbi.1006089. PubMed DOI PMC
Nothias L-F, et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods. 2020;17:905–908. doi: 10.1038/s41592-020-0933-6. PubMed DOI PMC
Mahieu NG, Patti GJ. Systems-level annotation of a metabolomics data set reduces 25,000 features to fewer than 1000 unique metabolites. Anal. Chem. 2017;89:10397–10406. doi: 10.1021/acs.analchem.7b02380. PubMed DOI PMC
Chen, L. et al. Metabolite discovery through global annotation of untargeted metabolomics data. bioRxiv10.1101/2021.01.06.425569 (2021). PubMed PMC
Broeckling, C. D., Afsar, F. A., Neumann, S., Ben-Hur, A. & Prenni, J. E. RAMClust: A novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal. Chem. 86, 6812–6817 (2014). PubMed
DeFelice BC, et al. Mass spectral feature list optimizer (MS-FLO): a tool to minimize false positive peak reports in untargeted liquid chromatography-mass spectroscopy (LC-MS) data processing. Anal. Chem. 2017;89:3250–3255. doi: 10.1021/acs.analchem.6b04372. PubMed DOI PMC
Uppal K, Walker DI, Jones DP. xMSannotator: An R package for network-based annotation of high-resolution metabolomics data. Anal. Chem. 2017;89:1063–1067. doi: 10.1021/acs.analchem.6b01214. PubMed DOI PMC
Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 2012;84:283–289. doi: 10.1021/ac202450g. PubMed DOI PMC
Senan O, et al. CliqueMS: a computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network. Bioinformatics. 2019;35:4089–4097. doi: 10.1093/bioinformatics/btz207. PubMed DOI PMC
Jaeger C, Méret M, Schmitt CA, Lisec J. Compound annotation in liquid chromatography/high-resolution mass spectrometry based metabolomics: robust adduct ion determination as a prerequisite to structure prediction in electrospray ionization mass spectra. Rapid Commun. Mass Spectrom. 2017;31:1261–1266. doi: 10.1002/rcm.7905. PubMed DOI
Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006;78:779–787. doi: 10.1021/ac051437y. PubMed DOI
Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC
Tsugawa H, et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI
Aron, A. et al. Native electrospray-based metabolomics enables the detection of metal-binding compounds. bioRxiv10.1101/824888 (2019).
Jagels, A. et al. Exploring secondary metabolite profiles of Stachybotrys spp. by LC-MS/MS. Toxins11, 133 (2019). PubMed PMC
Petras D, et al. High-resolution liquid chromatography tandem mass spectrometry enables large scale molecular characterization of dissolved organic matter. Front. Mar. Sci. 2017;4:405. doi: 10.3389/fmars.2017.00405. DOI
Gauglitz JM, et al. Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in raw and processed foods and beverages. Food Chem. 2020;302:125290. doi: 10.1016/j.foodchem.2019.125290. PubMed DOI
Frei A, et al. Metal complexes as a promising source for new antibiotics. Chem. Sci. 2020;11:2627–2639. doi: 10.1039/C9SC06460E. PubMed DOI PMC
Dührkop K, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods. 2019;16:299–302. doi: 10.1038/s41592-019-0344-8. PubMed DOI
Dührkop, K. et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 39, 462–471 (2021). PubMed
Tripathi A, et al. Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nat. Chem. Biol. 2021;17:146–151. doi: 10.1038/s41589-020-00677-3. PubMed DOI PMC
Wang M, et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 2020;38:23–26. doi: 10.1038/s41587-019-0375-9. PubMed DOI PMC
Fraisier-Vannier, O. et al. MS-CleanR: A Feature-Filtering Workflow for Untargeted LC-MS Based Metabolomics. Anal. Chem.92, 9971–9981 (2020). PubMed
Vargas, F. et al. Protocol for community-created public MS/MS reference spectra within the Global Natural Products Social Molecular Networking infrastructure. Rapid Commun. Mass Spectrom.34, e8725 (2020). PubMed
Tsugawa H, et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods. 2019;16:295–298. doi: 10.1038/s41592-019-0358-2. PubMed DOI
Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Gentleman RC, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80. doi: 10.1186/gb-2004-5-10-r80. PubMed DOI PMC
Treutler, H. & Neumann, S. Prediction, detection, and validation of isotope clusters in mass spectrometry data. Metabolites6, 37 (2016). PubMed PMC
Tsugawa H, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods. 2015;12:523–526. doi: 10.1038/nmeth.3393. PubMed DOI PMC
A universal language for finding mass spectrometry data patterns
Discovery of metabolites prevails amid in-source fragmentation
Empirically establishing drug exposure records directly from untargeted metabolomics data
Reproducible mass spectrometry data processing and compound annotation in MZmine 3
Characterization of Electrospray Ionization Complexity in Untargeted Metabolomic Studies
Functional metabolomics of the human scalp: a metabolic niche for Staphylococcus epidermidis
Integrative analysis of multimodal mass spectrometry data in MZmine 3