Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment

. 2021 Jun 22 ; 12 (1) : 3832. [epub] 20210622

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid34158495

Grantová podpora
R01 GM107550 NIGMS NIH HHS - United States
T32 AT010131 NCCIH NIH HHS - United States
P41 GM103484 NIGMS NIH HHS - United States
R01 AI126277 NIAID NIH HHS - United States
R01 AI145325 NIAID NIH HHS - United States
R01 GM132649 NIGMS NIH HHS - United States
R01 AI114625 NIAID NIH HHS - United States
R37 AI126277 NIAID NIH HHS - United States
R03 CA211211 NCI NIH HHS - United States
R56 AI114625 NIAID NIH HHS - United States

Odkazy

PubMed 34158495
PubMed Central PMC8219731
DOI 10.1038/s41467-021-23953-9
PII: 10.1038/s41467-021-23953-9
Knihovny.cz E-zdroje

Molecular networking connects mass spectra of molecules based on the similarity of their fragmentation patterns. However, during ionization, molecules commonly form multiple ion species with different fragmentation behavior. As a result, the fragmentation spectra of these ion species often remain unconnected in tandem mass spectrometry-based molecular networks, leading to redundant and disconnected sub-networks of the same compound classes. To overcome this bottleneck, we develop Ion Identity Molecular Networking (IIMN) that integrates chromatographic peak shape correlation analysis into molecular networks to connect and collapse different ion species of the same molecule. The new feature relationships improve network connectivity for structurally related molecules, can be used to reveal unknown ion-ligand complexes, enhance annotation within molecular networks, and facilitate the expansion of spectral reference libraries. IIMN is integrated into various open source feature finding tools and the GNPS environment. Moreover, IIMN-based spectral libraries with a broad coverage of ion species are publicly available.

Chair for Bioinformatics Friedrich Schiller University Jena Germany

Chiba University UC San Diego Center for Mucosal Immunology Allergy and Vaccines La Jolla CA USA

CMFI Cluster of Excellence Interfaculty Institute of Microbiology and Medicine University of Tübingen Tübingen Germany

Collaborative Mass Spectrometry Innovation Center University of California San Diego La Jolla San Diego CA USA

Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology Koganei shi Tokyo Japan

Department of Pharmaceutical Sciences College of Pharmacy Oregon State University Corvallis OR USA

Department of Psychiatry University of California San Diego San Diego CA USA

Division of Host Microbe Systems and Therapeutics Department of Pediatrics University of California San Diego La Jolla CA USA

Institute for Biomedicine Eurac Research Affiliated Institute of the University of Lübeck Bolzano Italy

Institute of Biomedical Sciences Universidade de São Paulo São Paulo SP Brazil

Institute of Food Chemistry University of Münster Münster Germany

Institute of Inorganic and Analytical Chemistry University of Münster Münster Germany

Institute of Microbiology Czech Academy of Sciences Prague Czech Republic

Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic

IRNASUS Universidad Católica de Córdoba CONICET Facultad de Ciencias Agropecuarias Córdoba Argentina

NuBBE Institute of Chemistry São Paulo State University Araraquara SP Brazil

RIKEN Center for Integrative Medical Sciences Yokohama Kanagawa Japan

RIKEN Center for Sustainable Resource Science Yokohama Kanagawa Japan

School of Pharmaceutical Sciences of Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil

Scripps Institution of Oceanography University of California San Diego La Jolla CA USA

Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego La Jolla San Diego CA USA

Univ Grenoble Alpes CNRS Grenoble INP CHU Grenoble Alpes TIMC IMAG Grenoble France

Zobrazit více v PubMed

Watrous J, et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl Acad. Sci. USA. 2012;109:E1743–E1752. doi: 10.1073/pnas.1203689109. PubMed DOI PMC

Wang M, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. doi: 10.1038/nbt.3597. PubMed DOI PMC

Quinn RA, et al. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol. Sci. 2017;38:143–154. doi: 10.1016/j.tips.2016.10.011. PubMed DOI

Fox Ramos AE, Evanno L, Poupon E, Champy P, Beniddir MA. Natural products targeting strategies involving molecular networking: different manners, one goal. Nat. Prod. Rep. 2019;36:960–980. doi: 10.1039/C9NP00006B. PubMed DOI

Aron AT, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020;15:1954–1991. doi: 10.1038/s41596-020-0317-5. PubMed DOI

da Silva RR, et al. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput. Biol. 2018;14:e1006089. doi: 10.1371/journal.pcbi.1006089. PubMed DOI PMC

Nothias L-F, et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods. 2020;17:905–908. doi: 10.1038/s41592-020-0933-6. PubMed DOI PMC

Mahieu NG, Patti GJ. Systems-level annotation of a metabolomics data set reduces 25,000 features to fewer than 1000 unique metabolites. Anal. Chem. 2017;89:10397–10406. doi: 10.1021/acs.analchem.7b02380. PubMed DOI PMC

Chen, L. et al. Metabolite discovery through global annotation of untargeted metabolomics data. bioRxiv10.1101/2021.01.06.425569 (2021). PubMed PMC

Broeckling, C. D., Afsar, F. A., Neumann, S., Ben-Hur, A. & Prenni, J. E. RAMClust: A novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal. Chem. 86, 6812–6817 (2014). PubMed

DeFelice BC, et al. Mass spectral feature list optimizer (MS-FLO): a tool to minimize false positive peak reports in untargeted liquid chromatography-mass spectroscopy (LC-MS) data processing. Anal. Chem. 2017;89:3250–3255. doi: 10.1021/acs.analchem.6b04372. PubMed DOI PMC

Uppal K, Walker DI, Jones DP. xMSannotator: An R package for network-based annotation of high-resolution metabolomics data. Anal. Chem. 2017;89:1063–1067. doi: 10.1021/acs.analchem.6b01214. PubMed DOI PMC

Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 2012;84:283–289. doi: 10.1021/ac202450g. PubMed DOI PMC

Senan O, et al. CliqueMS: a computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network. Bioinformatics. 2019;35:4089–4097. doi: 10.1093/bioinformatics/btz207. PubMed DOI PMC

Jaeger C, Méret M, Schmitt CA, Lisec J. Compound annotation in liquid chromatography/high-resolution mass spectrometry based metabolomics: robust adduct ion determination as a prerequisite to structure prediction in electrospray ionization mass spectra. Rapid Commun. Mass Spectrom. 2017;31:1261–1266. doi: 10.1002/rcm.7905. PubMed DOI

Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006;78:779–787. doi: 10.1021/ac051437y. PubMed DOI

Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11:395. doi: 10.1186/1471-2105-11-395. PubMed DOI PMC

Tsugawa H, et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI

Aron, A. et al. Native electrospray-based metabolomics enables the detection of metal-binding compounds. bioRxiv10.1101/824888 (2019).

Jagels, A. et al. Exploring secondary metabolite profiles of Stachybotrys spp. by LC-MS/MS. Toxins11, 133 (2019). PubMed PMC

Petras D, et al. High-resolution liquid chromatography tandem mass spectrometry enables large scale molecular characterization of dissolved organic matter. Front. Mar. Sci. 2017;4:405. doi: 10.3389/fmars.2017.00405. DOI

Gauglitz JM, et al. Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in raw and processed foods and beverages. Food Chem. 2020;302:125290. doi: 10.1016/j.foodchem.2019.125290. PubMed DOI

Frei A, et al. Metal complexes as a promising source for new antibiotics. Chem. Sci. 2020;11:2627–2639. doi: 10.1039/C9SC06460E. PubMed DOI PMC

Dührkop K, et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods. 2019;16:299–302. doi: 10.1038/s41592-019-0344-8. PubMed DOI

Dührkop, K. et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 39, 462–471 (2021). PubMed

Tripathi A, et al. Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nat. Chem. Biol. 2021;17:146–151. doi: 10.1038/s41589-020-00677-3. PubMed DOI PMC

Wang M, et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 2020;38:23–26. doi: 10.1038/s41587-019-0375-9. PubMed DOI PMC

Fraisier-Vannier, O. et al. MS-CleanR: A Feature-Filtering Workflow for Untargeted LC-MS Based Metabolomics. Anal. Chem.92, 9971–9981 (2020). PubMed

Vargas, F. et al. Protocol for community-created public MS/MS reference spectra within the Global Natural Products Social Molecular Networking infrastructure. Rapid Commun. Mass Spectrom.34, e8725 (2020). PubMed

Tsugawa H, et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods. 2019;16:295–298. doi: 10.1038/s41592-019-0358-2. PubMed DOI

Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Gentleman RC, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80. doi: 10.1186/gb-2004-5-10-r80. PubMed DOI PMC

Treutler, H. & Neumann, S. Prediction, detection, and validation of isotope clusters in mass spectrometry data. Metabolites6, 37 (2016). PubMed PMC

Tsugawa H, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods. 2015;12:523–526. doi: 10.1038/nmeth.3393. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A universal language for finding mass spectrometry data patterns

. 2025 Jun ; 22 (6) : 1247-1254. [epub] 20250512

Discovery of metabolites prevails amid in-source fragmentation

. 2025 Mar ; 7 (3) : 435-437.

Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data

. 2025 Jan ; 20 (1) : 92-162. [epub] 20240920

Empirically establishing drug exposure records directly from untargeted metabolomics data

. 2024 Oct 26 ; () : . [epub] 20241026

Reproducible mass spectrometry data processing and compound annotation in MZmine 3

. 2024 Sep ; 19 (9) : 2597-2641. [epub] 20240520

Characterization of Electrospray Ionization Complexity in Untargeted Metabolomic Studies

. 2024 Jul 09 ; 96 (27) : 10935-10942. [epub] 20240625

Functional metabolomics of the human scalp: a metabolic niche for Staphylococcus epidermidis

. 2024 Feb 20 ; 9 (2) : e0035623. [epub] 20240111

Evaluation of Data-Dependent MS/MS Acquisition Parameters for Non-Targeted Metabolomics and Molecular Networking of Environmental Samples: Focus on the Q Exactive Platform

. 2023 Aug 29 ; 95 (34) : 12673-12682. [epub] 20230814

Integrative analysis of multimodal mass spectrometry data in MZmine 3

. 2023 Apr ; 41 (4) : 447-449.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...