Evaluation of Data-Dependent MS/MS Acquisition Parameters for Non-Targeted Metabolomics and Molecular Networking of Environmental Samples: Focus on the Q Exactive Platform

. 2023 Aug 29 ; 95 (34) : 12673-12682. [epub] 20230814

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37578818

Non-targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a widely used tool for metabolomics analysis, enabling the detection and annotation of small molecules in complex environmental samples. Data-dependent acquisition (DDA) of product ion spectra is thereby currently one of the most frequently applied data acquisition strategies. The optimization of DDA parameters is central to ensuring high spectral quality, coverage, and number of compound annotations. Here, we evaluated the influence of 10 central DDA settings of the Q Exactive mass spectrometer on natural organic matter samples from ocean, river, and soil environments. After data analysis with classical and feature-based molecular networking using MZmine and GNPS, we compared the total number of network nodes, multivariate clustering, and spectrum quality-related metrics such as annotation and singleton rates, MS/MS placement, and coverage. Our results show that automatic gain control, microscans, mass resolving power, and dynamic exclusion are the most critical parameters, whereas collision energy, TopN, and isolation width had moderate and apex trigger, monoisotopic selection, and isotopic exclusion minor effects. The insights into the data acquisition ergonomics of the Q Exactive platform presented here can guide new users and provide them with initial method parameters, some of which may also be transferable to other sample types and MS platforms.

Zobrazit více v PubMed

Catalá T. S.; Shorte S.; Dittmar T. Marine Dissolved Organic Matter: A Vast and Unexplored Molecular Space. Appl. Microbiol. Biotechnol. 2021, 105, 7225–7239. 10.1007/s00253-021-11489-3. PubMed DOI PMC

Kido Soule M. C.; Longnecker K.; Johnson W. M.; Kujawinski E. B. Environmental Metabolomics: Analytical Strategies. Mar. Chem. 2015, 177, 374–387. 10.1016/j.marchem.2015.06.029. DOI

Lai A.; Clark A. M.; Escher B. I.; Fernandez M.; McEwen L. R.; Tian Z.; Wang Z.; Schymanski E. L. The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). Environ. Sci. Technol. 2022, 56, 7448–7466. 10.1021/acs.est.2c00321. PubMed DOI PMC

Withers E.; Hill P. W.; Chadwick D. R.; Jones D. L. Use of Untargeted Metabolomics for Assessing Soil Quality and Microbial Function. Soil Biol. Biochem. 2020, 143, 10775810.1016/j.soilbio.2020.107758. DOI

Eliuk S.; Makarov A. Evolution of Orbitrap Mass Spectrometry Instrumentation. Annu. Rev. Anal. Chem. 2015, 8, 61–80. 10.1146/annurev-anchem-071114-040325. PubMed DOI

Longnecker K.; Kujawinski E. B. Mining Mass Spectrometry Data: Using New Computational Tools to Find Novel Organic Compounds in Complex Environmental Mixtures. Org. Geochem. 2017, 110, 92–99. 10.1016/j.orggeochem.2017.05.008. DOI

Lu K.; Gardner W. S.; Liu Z. Molecular Structure Characterization of Riverine and Coastal Dissolved Organic Matter with Ion Mobility Quadrupole Time-of-Flight LCMS (IM Q-TOF LCMS). Environ. Sci. Technol. 2018, 52, 7182–7191. 10.1021/acs.est.8b00999. PubMed DOI

Broeckling C. D.; Hoyes E.; Richardson K.; Brown J. M.; Prenni J. E. Comprehensive Tandem-Mass-Spectrometry Coverage of Complex Samples Enabled by Data-Set-Dependent Acquisition. Anal. Chem. 2018, 90, 8020–8027. 10.1021/acs.analchem.8b00929. PubMed DOI

Guo J.; Huan T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography-Mass Spectrometry Based Untargeted Metabolomics. Anal. Chem. 2020, 92, 8072–8080. 10.1021/acs.analchem.9b05135. PubMed DOI

Chase M. W.; National Information Standards Organization (US) . NIST-JANAF Thermochemical Tables; American Chemical Society: Washington, DC, 1998; vol 9.

Horai H.; Arita M.; Kanaya S.; Nihei Y.; Ikeda T.; Suwa K.; Ojima Y.; Tanaka K.; Tanaka S.; Aoshima K.; Oda Y.; Kakazu Y.; Kusano M.; Tohge T.; Matsuda F.; Sawada Y.; Hirai M. Y.; Nakanishi H.; Ikeda K.; Akimoto N.; Maoka T.; Takahashi H.; Ara T.; Sakurai N.; Suzuki H.; Shibata D.; Neumann S.; Iida T.; Tanaka K.; Funatsu K.; Matsuura F.; Soga T.; Taguchi R.; Saito K.; Nishioka T. MassBank: A Public Repository for Sharing Mass Spectral Data for Life Sciences. J. Mass Spectrom. 2010, 45, 703–714. 10.1002/jms.1777. PubMed DOI

Montenegro-Burke J. R.; Guijas C.; Siuzdak G.. METLIN: A Tandem Mass Spectral Library of Standards. In Computational Methods and Data Analysis for Metabolomics; Li S., Ed.; Methods in Molecular Biology; Springer US: New York, NY, 2020; pp 149–163. PubMed PMC

mzCloud – Advanced Mass Spectral Database. https://www.mzcloud.org/. (accessed 04 July, 2022).

Smith C. A.; Maille G. O.; Want E. J.; Qin C.; Trauger S. A.; Brandon T. R.; Custodio D. E.; Abagyan R.; Siuzdak G. METLIN: A Metabolite Mass Spectral Database. Ther. Drug Monit. 2005, 27, 747–751. 10.1097/01.ftd.0000179845.53213.39. PubMed DOI

Wang M.; Carver J. J.; Phelan V. V.; Sanchez L. M.; Garg N.; Peng Y.; Nguyen D. D.; Watrous J.; Kapono C. A.; Luzzatto-Knaan T.; Porto C.; Bouslimani A.; Melnik A. V.; Meehan M. J.; Liu W.-T.; Crüsemann M.; Boudreau P. D.; Esquenazi E.; Sandoval-Calderón M.; Kersten R. D.; Pace L. A.; Quinn R. A.; Duncan K. R.; Hsu C.-C.; Floros D. J.; Gavilan R. G.; Kleigrewe K.; Northen T.; Dutton R. J.; Parrot D.; Carlson E. E.; Aigle B.; Michelsen C. F.; Jelsbak L.; Sohlenkamp C.; Pevzner P.; Edlund A.; McLean J.; Piel J.; Murphy B. T.; Gerwick L.; Liaw C.-C.; Yang Y.-L.; Humpf H.-U.; Maansson M.; Keyzers R. A.; Sims A. C.; Johnson A. R.; Sidebottom A. M.; Sedio B. E.; Klitgaard A.; Larson C. B.; Boya P.; Torres-Mendoza D.; Gonzalez D. J.; Silva D. B.; Marques L. M.; Demarque D. P.; Pociute E.; O’Neill E. C.; Briand E.; Helfrich E. J. N.; Granatosky E. A.; Glukhov E.; Ryffel F.; Houson H.; Mohimani H.; Kharbush J. J.; Zeng Y.; Vorholt J. A.; Kurita K. L.; Charusanti P.; McPhail K. L.; Nielsen K. F.; Vuong L.; Elfeki M.; Traxler M. F.; Engene N.; Koyama N.; Vining O. B.; Baric R.; Silva R. R.; Mascuch S. J.; Tomasi S.; Jenkins S.; Macherla V.; Hoffman T.; Agarwal V.; Williams P. G.; Dai J.; Neupane R.; Gurr J.; Rodríguez A. M. C.; Lamsa A.; Zhang C.; Dorrestein K.; Duggan B. M.; Almaliti J.; Allard P.-M.; Phapale P.; Nothias L.-F.; Alexandrov T.; Litaudon M.; Wolfender J.-L.; Kyle J. E.; Metz T. O.; Peryea T.; Nguyen D.-T.; VanLeer D.; Shinn P.; Jadhav A.; Müller R.; Waters K. M.; Shi W.; Liu X.; Zhang L.; Knight R.; Jensen P. R.; Palsson B. Ø.; Pogliano K.; Linington R. G.; Gutiérrez M.; Lopes N. P.; Gerwick W. H.; Moore B. S.; Dorrestein P. C.; Bandeira N. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. 10.1038/nbt.3597. PubMed DOI PMC

Sumner L. W.; Amberg A.; Barrett D.; Beale M. H.; Beger R.; Daykin C. A.; Fan T. W.-M.; Fiehn O.; Goodacre R.; Griffin J. L.; Hankemeier T.; Hardy N.; Harnly J.; Higashi R.; Kopka J.; Lane A. N.; Lindon J. C.; Marriott P.; Nicholls A. W.; Reily M. D.; Thaden J. J.; Viant M. R. Proposed Minimum Reporting Standards for Chemical Analysis. Metabolomics 2007, 3, 211–221. 10.1007/s11306-007-0082-2. PubMed DOI PMC

Bittremieux W.; Avalon N. E.; Thomas S. P.; Kakhkhorov S. A.; Aksenov A. A.; Gomes P. W. P.; Aceves C. M.; Rodríguez A. M. C.; Gauglitz J. M.; Gerwick W. H.; Jarmusch A. K.; Kaddurah-Daouk R. F.; Kang K. B.; Kim H. W.; Kondic T.; Mannochio-Russo H.; Meehan M. J.; Melnik A. V.; Nothias L.-F.; ODonovan C.; Panitchpakdi M.; Petras D.; Schmid R.; Schymanski E. L.; Van Der Hooft J. J. J.; Weldon K. C.; Yang H.; Zemlin J.; Wang M.; Dorrestein P. C. Open Access Repository-Scale Propagated Nearest Neighbor Suspect Spectral Library for Untargeted Metabolomics. bioRxiv 2022, 2022.05.15.49069110.1101/2022.05.15.490691. PubMed DOI PMC

Dührkop K.; Shen H.; Meusel M.; Rousu J.; Böcker S. Searching Molecular Structure Databases with Tandem Mass Spectra Using CSI:FingerID. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 12580–12585. 10.1073/pnas.1509788112. PubMed DOI PMC

Dührkop K.; Fleischauer M.; Ludwig M.; Aksenov A. A.; Melnik A. V.; Meusel M.; Dorrestein P. C.; Rousu J.; Böcker S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. 10.1038/s41592-019-0344-8. PubMed DOI

Dührkop K.; Nothias L.-F.; Fleischauer M.; Reher R.; Ludwig M.; Hoffmann M. A.; Petras D.; Gerwick W. H.; Rousu J.; Dorrestein P. C.; Böcker S. Systematic Classification of Unknown Metabolites Using High-Resolution Fragmentation Mass Spectra. Nat. Biotechnol. 2021, 39, 462–471. 10.1038/s41587-020-0740-8. PubMed DOI

Giné R.; Capellades J.; Badia J. M.; Vughs D.; Schwaiger-Haber M.; Alexandrov T.; Vinaixa M.; Brunner A. M.; Patti G. J.; Yanes O. HERMES: A Molecular-Formula-Oriented Method to Target the Metabolome. Nat. Methods 2021, 18, 1370–1376. 10.1038/s41592-021-01307-z. PubMed DOI PMC

Jarmusch A. K.; Wang M.; Aceves C. M.; Advani R. S.; Aguirre S.; Aksenov A. A.; Aleti G.; Aron A. T.; Bauermeister A.; Bolleddu S.; Bouslimani A.; Caraballo Rodriguez A. M.; Chaar R.; Coras R.; Elijah E. O.; Ernst M.; Gauglitz J. M.; Gentry E. C.; Husband M.; Jarmusch S. A.; Jones K. L.; Kamenik Z.; Le Gouellec A.; Lu A.; McCall L.-I.; McPhail K. L.; Meehan M. J.; Melnik A. V.; Menezes R. C.; Montoya Giraldo Y. A.; Nguyen N. H.; Nothias L. F.; Nothias-Esposito M.; Panitchpakdi M.; Petras D.; Quinn R. A.; Sikora N.; van der Hooft J. J. J.; Vargas F.; Vrbanac A.; Weldon K. C.; Knight R.; Bandeira N.; Dorrestein P. C. ReDU: A Framework to Find and Reanalyze Public Mass Spectrometry Data. Nat. Methods 2020, 17, 901–904. 10.1038/s41592-020-0916-7. PubMed DOI PMC

Li Y.; Kind T.; Folz J.; Vaniya A.; Mehta S. S.; Fiehn O. Spectral Entropy Outperforms MS/MS Dot Product Similarity for Small-Molecule Compound Identification. Nat. Methods 2021, 18, 1524–1531. 10.1038/s41592-021-01331-z. PubMed DOI PMC

Ludwig M.; Nothias L.-F.; Dührkop K.; Koester I.; Fleischauer M.; Hoffmann M. A.; Petras D.; Vargas F.; Morsy M.; Aluwihare L.; Dorrestein P. C.; Böcker S. Database-Independent Molecular Formula Annotation Using Gibbs Sampling through ZODIAC. Nat. Mach. Intell. 2020, 2, 629–641. 10.1038/s42256-020-00234-6. DOI

Nothias L.-F.; Petras D.; Schmid R.; Dührkop K.; Rainer J.; Sarvepalli A.; Protsyuk I.; Ernst M.; Tsugawa H.; Fleischauer M.; Aicheler F.; Aksenov A. A.; Alka O.; Allard P.-M.; Barsch A.; Cachet X.; Caraballo-Rodriguez A. M.; Da Silva R. R.; Dang T.; Garg N.; Gauglitz J. M.; Gurevich A.; Isaac G.; Jarmusch A. K.; Kameník Z.; Kang K. B.; Kessler N.; Koester I.; Korf A.; Le Gouellec A.; Ludwig M.; Martin C. H.; McCall L.-I.; McSayles J.; Meyer S. W.; Mohimani H.; Morsy M.; Moyne O.; Neumann S.; Neuweger H.; Nguyen N. H.; Nothias-Esposito M.; Paolini J.; Phelan V. V.; Pluskal T.; Quinn R. A.; Rogers S.; Shrestha B.; Tripathi A.; Van Der Hooft J. J. J.; Vargas F.; Weldon K. C.; Witting M.; Yang H.; Zhang Z.; Zubeil F.; Kohlbacher O.; Böcker S.; Alexandrov T.; Bandeira N.; Wang M.; Dorrestein P. C Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17, 905–908. 10.1038/s41592-020-0933-6. PubMed DOI PMC

Petras D.; Phelan V. V.; Acharya D.; Allen A. E.; Aron A. T.; Bandeira N.; Bowen B. P.; Belle-Oudry D.; Boecker S.; Cummings D. A.; Deutsch J. M.; Fahy E.; Garg N.; Gregor R.; Handelsman J.; Navarro-Hoyos M.; Jarmusch A. K.; Jarmusch S. A.; Louie K.; Maloney K. N.; Marty M. T.; Meijler M. M.; Mizrahi I.; Neve R. L.; Northen T. R.; Molina-Santiago C.; Panitchpakdi M.; Pullman B.; Puri A. W.; Schmid R.; Subramaniam S.; Thukral M.; Vasquez-Castro F.; Dorrestein P. C.; Wang M. GNPS Dashboard: Collaborative Exploration of Mass Spectrometry Data in the Web Browser. Nat. Methods 2022, 19, 134–136. 10.1038/s41592-021-01339-5. PubMed DOI PMC

Pluskal T.; Castillo S.; Villar-Briones A.; Oresic M. MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinf. 2010, 11, 395.10.1186/1471-2105-11-395. PubMed DOI PMC

Ruttkies C.; Schymanski E. L.; Wolf S.; Hollender J.; Neumann S. MetFrag Relaunched: Incorporating Strategies beyond in Silico Fragmentation. J. Cheminform. 2016, 8, 3.10.1186/s13321-016-0115-9. PubMed DOI PMC

Schmid R.; Petras D.; Nothias L.-F.; Wang M.; Aron A. T.; Jagels A.; Tsugawa H.; Rainer J.; Garcia-Aloy M.; Dührkop K.; Korf A.; Pluskal T.; Kameník Z.; Jarmusch A. K.; Caraballo-Rodríguez A. M.; Weldon K. C.; Nothias-Esposito M.; Aksenov A. A.; Bauermeister A.; Albarracin Orio A.; Grundmann C. O.; Vargas F.; Koester I.; Gauglitz J. M.; Gentry E. C.; Hövelmann Y.; Kalinina S. A.; Pendergraft M. A.; Panitchpakdi M.; Tehan R.; Le Gouellec A.; Aleti G.; Mannochio Russo H.; Arndt B.; Hübner F.; Hayen H.; Zhi H.; Raffatellu M.; Prather K. A.; Aluwihare L. I.; Böcker S.; McPhail K. L.; Humpf H.-U.; Karst U.; Dorrestein P. C. Ion Identity Molecular Networking for Mass Spectrometry-Based Metabolomics in the GNPS Environment. Nat. Commun. 2021, 12, 3832.10.1038/s41467-021-23953-9. PubMed DOI PMC

Smith C. A.; Want E. J.; O’Maille G.; Abagyan R.; Siuzdak G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. 10.1021/ac051437y. PubMed DOI

Sturm M.; Bertsch A.; Gröpl C.; Hildebrandt A.; Hussong R.; Lange E.; Pfeifer N.; Schulz-Trieglaff O.; Zerck A.; Reinert K.; Kohlbacher O. OpenMS – An Open-Source Software Framework for Mass Spectrometry. BMC Bioinf. 2008, 9, 163.10.1186/1471-2105-9-163. PubMed DOI PMC

Tautenhahn R.; Patti G. J.; Rinehart D.; Siuzdak G. XCMS Online: A Web-Based Platform to Process Untargeted Metabolomic Data. Anal. Chem. 2012, 84, 5035–5039. 10.1021/ac300698c. PubMed DOI PMC

Tsugawa H.; Cajka T.; Kind T.; Ma Y.; Higgins B.; Ikeda K.; Kanazawa M.; VanderGheynst J.; Fiehn O.; Arita M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods 2015, 12, 523–526. 10.1038/nmeth.3393. PubMed DOI PMC

Wandy J.; Zhu Y.; van der Hooft J. J. J.; Daly R.; Barrett M. P.; Rogers S. Ms2lda.Org: Web-Based Topic Modelling for Substructure Discovery in Mass Spectrometry. Bioinformatics 2018, 34, 317–318. 10.1093/bioinformatics/btx582. PubMed DOI PMC

Wang M.; Jarmusch A. K.; Vargas F.; Aksenov A. A.; Gauglitz J. M.; Weldon K.; Petras D.; da Silva R.; Quinn R.; Melnik A. V.; van der Hooft J. J. J.; Caraballo-Rodríguez A. M.; Nothias L. F.; Aceves C. M.; Panitchpakdi M.; Brown E.; Di Ottavio F.; Sikora N.; Elijah E. O.; Labarta-Bajo L.; Gentry E. C.; Shalapour S.; Kyle K. E.; Puckett S. P.; Watrous J. D.; Carpenter C. S.; Bouslimani A.; Ernst M.; Swafford A. D.; Zúñiga E. I.; Balunas M. J.; Klassen J. L.; Loomba R.; Knight R.; Bandeira N.; Dorrestein P. C. Mass Spectrometry Searches Using MASST. Nat. Biotechnol. 2020, 38, 23–26. 10.1038/s41587-019-0375-9. PubMed DOI PMC

Crocker D. R.; Kaluarachchi C. P.; Cao R.; Dinasquet J.; Franklin E. B.; Morris C. K.; Amiri S.; Petras D.; Nguyen T.; Torres R. R.; Martz T. R.; Malfatti F.; Goldstein A. H.; Tivanski A. V.; Prather K. A.; Thiemens M. H. Isotopic Insights into Organic Composition Differences between Supermicron and Submicron Sea Spray Aerosol. Environ. Sci. Technol. 2022, 56, 9947.10.1021/acs.est.2c02154. PubMed DOI

Eysseric E.; Beaudry F.; Gagnon C.; Segura P. A. Non-Targeted Screening of Trace Organic Contaminants in Surface Waters by a Multi-Tool Approach Based on Combinatorial Analysis of Tandem Mass Spectra and Open Access Databases. Talanta 2021, 230, 12229310.1016/j.talanta.2021.122293. PubMed DOI

Gamba A.; Petras D.; Little M.; White B.; Dorrestein P. C.; Rohwer F.; Foster R. A.; Hartmann A. C. Applying Tissue Separation and Untargeted Metabolomics to Understanding Lipid Saturation Kinetics of Host Mitochondria and Symbiotic Algae in Corals Under High Temperature Stress. Front. Mar. Sci. 2022, 9, 85355410.3389/fmars.2022.853554. DOI

Garcia S. L.; Nuy J. K.; Mehrshad M.; Hampel J. J.; Sedano-Nuñez V. T.; Buck M.; Divne A.-M.; Lindström E. S.; Petras D.; Hawkes J.; Bertilsson S. Taxonomic and Functional Diversity of Aquatic Heterotrophs Is Sustained by Dissolved Organic Matter Chemodiversity. bioRxiv 2022, 2022.03.21.48501910.1101/2022.03.21.485019. DOI

Molina-Santiago C.; Vela-Corcía D.; Petras D.; Díaz-Martínez L.; Pérez-Lorente A. I.; Sopeña-Torres S.; Pearson J.; Caraballo-Rodríguez A. M.; Dorrestein P. C.; de Vicente A.; Romero D. Chemical Interplay and Complementary Adaptative Strategies Toggle Bacterial Antagonism and Co-Existence. Cell Rep. 2021, 36, 10944910.1016/j.celrep.2021.109449. PubMed DOI PMC

Oberleitner D.; Schmid R.; Schulz W.; Bergmann A.; Achten C. Feature-Based Molecular Networking for Identification of Organic Micropollutants Including Metabolites by Non-Target Analysis Applied to Riverbank Filtration. Anal. Bioanal. Chem. 2021, 413, 5291–5300. 10.1007/s00216-021-03500-7. PubMed DOI PMC

Tong Y.; Wang P.; Sun J.; Li X.; Wang T.; Zhou Q.; Xie Z.; Jiang C.; Wang J. Metabolomics and Molecular Networking Approaches Reveal Differential Metabolites of Radix Scrophulariae from Different Geographical Origins: Correlations with Climatic Factors and Biochemical Compounds in Soil. Ind. Crops Prod. 2021, 174, 11416910.1016/j.indcrop.2021.114169. DOI

Wegley Kelly L.; Nelson C. E.; Petras D.; Koester I.; Quinlan Z. A.; Arts M. G. I.; Nothias L.-F.; Comstock J.; White B. M.; Hopmans E. C.; van Duyl F. C.; Carlson C. A.; Aluwihare L. I.; Dorrestein P. C.; Haas A. F. Distinguishing the Molecular Diversity, Nutrient Content, and Energetic Potential of Exometabolomes Produced by Macroalgae and Reef-Building Corals. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e211028311910.1073/pnas.2110283119. PubMed DOI PMC

Chen L.; Lu W.; Wang L.; Xing X.; Chen Z.; Teng X.; Zeng X.; Muscarella A. D.; Shen Y.; Cowan A.; McReynolds M. R.; Kennedy B. J.; Lato A. M.; Campagna S. R.; Singh M.; Rabinowitz J. D. Metabolite Discovery through Global Annotation of Untargeted Metabolomics Data. Nat. Methods 2021, 1377–1385. 10.1038/s41592-021-01303-3. PubMed DOI PMC

Defossez E.; Bourquin J.; von Reuss S.; Rasmann S.; Glauser G. Eight Key Rules for Successful Data-Dependent Acquisition in Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2023, 42, 131–143. 10.1002/mas.21715. PubMed DOI PMC

Davies V.; Wandy J.; Weidt S.; van der Hooft J. J. J.; Miller A.; Daly R.; Rogers S. Rapid Development of Improved Data-Dependent Acquisition Strategies. Anal. Chem. 2021, 93, 5676–5683. 10.1021/acs.analchem.0c03895. PubMed DOI PMC

Xu R.; Lee J.; Chen L.; Zhu J. Enhanced Detection and Annotation of Small Molecules in Metabolomics Using Molecular-Network-Oriented Parameter Optimization. Mol. Omics 2021, 17, 665–676. 10.1039/D1MO00005E. PubMed DOI PMC

Zhang C.; Liu M.; Xu X.; Wu J.; Li X.; Wang H.; Gao X.; Guo D.; Tian X.; Yang W. Application of Large-Scale Molecular Prediction for Creating the Preferred Precursor Ions List to Enhance the Identification of Ginsenosides from the Flower Buds of Panax Ginseng. J. Agric. Food Chem. 2022, 70, 5932–5944. 10.1021/acs.jafc.2c01435. PubMed DOI

Afoullouss S.; Balsam A.; Allcock A. L.; Thomas O. P. Optimization of LC-MS2 Data Acquisition Parameters for Molecular Networking Applied to Marine Natural Products. Metabolites 2022, 12, 245.10.3390/metabo12030245. PubMed DOI PMC

Ramabulana A.-T.; Petras D.; Madala N. E.; Tugizimana F. Metabolomics and Molecular Networking to Characterize the Chemical Space of Four Momordica Plant Species. Metabolites 2021, 11, 763.10.3390/metabo11110763. PubMed DOI PMC

Bahureksa W.; Borch T.; Young R. B.; Weisbrod C.; Blakney G. T.; McKenna A. M. Improved Dynamic Range, Resolving Power, and Sensitivity Achievable with FT-ICR Mass Spectrometry at 21 T Reveals the Hidden Complexity of Natural Organic Matter. Anal. Chem. 2022, 94, 11382–11389. 10.1021/acs.analchem.2c02377. PubMed DOI

Schmid R.; Heuckeroth S.; Korf A.; Smirnov A.; Myers O.; Dyrlund T. S.; Bushuiev R.; Murray K. J.; Hoffmann N.; Lu M.; Sarvepalli A.; Zhang Z.; Fleischauer M.; Dührkop K.; Wesner M.; Hoogstra S. J.; Rudt E.; Mokshyna O.; Brungs C.; Ponomarov K.; Mutabdžija L.; Damiani T.; Pudney C. J.; Earll M.; Helmer P. O.; Fallon T. R.; Schulze T.; Rivas-Ubach A.; Bilbao A.; Richter H.; Nothias L.-F.; Wang M.; Orešič M.; Weng J.-K.; Böcker S.; Jeibmann A.; Hayen H.; Karst U.; Dorrestein P. C.; Petras D.; Du X.; Pluskal T. Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3. Nat. Biotechnol. 2023, 447–449. 10.1038/s41587-023-01690-2. PubMed DOI PMC

Petras D.; Minich J. J.; Cancelada L. B.; Torres R. R.; Kunselman E.; Wang M.; White M. E.; Allen E. E.; Prather K. A.; Aluwihare L. I.; Dorrestein P. C. Non-Targeted Tandem Mass Spectrometry Enables the Visualization of Organic Matter Chemotype Shifts in Coastal Seawater. Chemosphere 2021, 271, 12945010.1016/j.chemosphere.2020.129450. PubMed DOI PMC

Cancelada L.; Torres R. R.; Garrafa Luna J.; Dorrestein P. C.; Aluwihare L. I.; Prather K. A.; Petras D. Assessment of Styrene-Divinylbenzene Polymer (PPL) Solid-Phase Extraction and Non-Targeted Tandem Mass Spectrometry for the Analysis of Xenobiotics in Seawater. Limnol. Oceanogr. Methods 2022, 20, 89–101. 10.1002/lom3.10470. DOI

Petras D.; Koester I.; Da Silva R.; Stephens B. M.; Haas A. F.; Nelson C. E.; Kelly L. W.; Aluwihare L. I.; Dorrestein P. C. High-Resolution Liquid Chromatography Tandem Mass Spectrometry Enables Large Scale Molecular Characterization of Dissolved Organic Matter. Front. Mar. Sci. 2017, 4, 405.10.3389/fmars.2017.00405. DOI

Adusumilli R.; Mallick P. Data Conversion with ProteoWizard MsConvert. Methods Mol. Biol. 2017, 1550, 339–368. 10.1007/978-1-4939-6747-6_23. PubMed DOI

Bolyen E.; Rideout J. R.; Dillon M. R.; Bokulich N. A.; Abnet C. C.; Al-Ghalith G. A.; Alexander H.; Alm E. J.; Arumugam M.; Asnicar F.; Bai Y.; Bisanz J. E.; Bittinger K.; Brejnrod A.; Brislawn C. J.; Brown C. T.; Callahan B. J.; Caraballo-Rodríguez A. M.; Chase J.; Cope E. K.; Da Silva R.; Diener C.; Dorrestein P. C.; Douglas G. M.; Durall D. M.; Duvallet C.; Edwardson C. F.; Ernst M.; Estaki M.; Fouquier J.; Gauglitz J. M.; Gibbons S. M.; Gibson D. L.; Gonzalez A.; Gorlick K.; Guo J.; Hillmann B.; Holmes S.; Holste H.; Huttenhower C.; Huttley G. A.; Janssen S.; Jarmusch A. K.; Jiang L.; Kaehler B. D.; Kang K. B.; Keefe C. R.; Keim P.; Kelley S. T.; Knights D.; Koester I.; Kosciolek T.; Kreps J.; Langille M. G. I.; Lee J.; Ley R.; Liu Y.-X.; Loftfield E.; Lozupone C.; Maher M.; Marotz C.; Martin B. D.; McDonald D.; McIver L. J.; Melnik A. V.; Metcalf J. L.; Morgan S. C.; Morton J. T.; Naimey A. T.; Navas-Molina J. A.; Nothias L. F.; Orchanian S. B.; Pearson T.; Peoples S. L.; Petras D.; Preuss M. L.; Pruesse E.; Rasmussen L. B.; Rivers A.; Robeson M. S.; Rosenthal P.; Segata N.; Shaffer M.; Shiffer A.; Sinha R.; Song S. J.; Spear J. R.; Swafford A. D.; Thompson L. R.; Torres P. J.; Trinh P.; Tripathi A.; Turnbaugh P. J.; Ul-Hasan S.; van der Hooft J. J. J.; Vargas F.; Vázquez-Baeza Y.; Vogtmann E.; von Hippel M.; Walters W.; Wan Y.; Wang M.; Warren J.; Weber K. C.; Williamson C. H. D.; Willis A. D.; Xu Z. Z.; Zaneveld J. R.; Zhang Y.; Zhu Q.; Knight R.; Caporaso J. G. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. 10.1038/s41587-019-0209-9. PubMed DOI PMC

Shannon P.; Markiel A.; Ozier O.; Baliga N. S.; Wang J. T.; Ramage D.; Amin N.; Schwikowski B.; Ideker T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. 10.1101/gr.1239303. PubMed DOI PMC

Khan A.; Mathelier A. Intervene: A Tool for Intersection and Visualization of Multiple Gene or Genomic Region Sets. BMC Bioinf. 2017, 18, 287.10.1186/s12859-017-1708-7. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data

. 2025 Jan ; 20 (1) : 92-162. [epub] 20240920

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...