Characterization of five newly isolated bacteriophages active against Pseudomonas aeruginosa clinical strains
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- bakteriofágy klasifikace genetika izolace a purifikace fyziologie MeSH
- biologická terapie MeSH
- hostitelská specificita MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- Myoviridae klasifikace genetika izolace a purifikace fyziologie MeSH
- odpadní vody virologie MeSH
- Podoviridae klasifikace genetika izolace a purifikace fyziologie MeSH
- pseudomonádové infekce mikrobiologie terapie MeSH
- Pseudomonas aeruginosa virologie MeSH
- virové proteiny genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- odpadní vody MeSH
- virové proteiny MeSH
Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections, especially in patients with immunodeficiency. It exhibits multiple mechanisms of resistance, including efflux pumps, antibiotic modifying enzymes and limited membrane permeability. The primary reason for the development of novel therapeutics for P. aeruginosa infections is the declining efficacy of conventional antibiotic therapy. These clinical problems caused a revitalization of interest in bacteriophages, which are highly specific and have very effective antibacterial activity as well as several other advantages over traditional antimicrobial agents. Above all, so far, no serious or irreversible side effects of phage therapy have been described. Five newly purified P. aeruginosa phages named vB_PaeM_WP1, vB_PaeM_WP2, vB_PaeM_WP3, vB_PaeM_WP4 and vB_PaeP_WP5 have been characterized as potential candidates for use in phage therapy. They are representatives of the Myoviridae and Podoviridae families. Their host range, genome size, structural proteins and stability in various physical and chemical conditions were tested. The results of these preliminary investigations indicate that the newly isolated bacteriophages may be considered for use in phagotherapy.
Zobrazit více v PubMed
Curr Microbiol. 2011 Feb;62(2):335-40 PubMed
J Infect Dis. 2010 Apr 1;201(7):1096-104 PubMed
Curr Microbiol. 2012 Apr;64(4):305-11 PubMed
Antimicrob Agents Chemother. 2010 Jan;54(1):397-404 PubMed
Viruses. 2012 Dec 21;5(1):15-53 PubMed
PLoS One. 2012;7(10):e47742 PubMed
Appl Microbiol Biotechnol. 2011 May;90(4):1333-45 PubMed
PLoS One. 2011 Feb 15;6(2):e16963 PubMed
Microbiol Mol Biol Rev. 2012 Mar;76(1):46-65 PubMed
Virol J. 2013 Mar 28;10:100 PubMed
Res Microbiol. 2011 Oct;162(8):798-806 PubMed
Curr Opin Virol. 2011 Oct;1(4):298-303 PubMed
Crit Care Med. 2009 May;37(5):1777-86 PubMed
Clin Otolaryngol. 2009 Aug;34(4):349-57 PubMed
Eur Respir J. 2012 Oct;40(4):1014-23 PubMed
Expert Rev Pharmacoecon Outcomes Res. 2010 Aug;10(4):441-51 PubMed
J Appl Microbiol. 2012 Dec;113(6):1530-9 PubMed
Curr Issues Mol Biol. 2012;14(2):47-70 PubMed
BMC Microbiol. 2011 May 14;11:102 PubMed
Clin Microbiol Infect. 2007 Jun;13(6):560-78 PubMed
Drug Resist Updat. 2000 Aug;3(4):247-255 PubMed
Nucleic Acids Res. 2013 Jan 7;41(1):1-20 PubMed
Antimicrob Agents Chemother. 2007 Jun;51(6):1934-8 PubMed
Folia Microbiol (Praha). 2011 May;56(3):191-200 PubMed
Appl Microbiol Biotechnol. 2012 Jun;94(6):1609-17 PubMed
Mol Microbiol. 1999 Jan;31(2):399-419 PubMed
Virology. 2003 Jul 20;312(1):49-59 PubMed
Proteomics. 2009 Jun;9(11):3215-9 PubMed