Surface modification strategies and the functional mechanisms of gold nanozyme in biosensing and bioassay

. 2023 Jun ; 20 () : 100656. [epub] 20230504

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37214551
Odkazy

PubMed 37214551
PubMed Central PMC10199192
DOI 10.1016/j.mtbio.2023.100656
PII: S2590-0064(23)00116-3
Knihovny.cz E-zdroje

Gold nanozymes (GNZs) have been widely used in biosensing and bioassay due to their interesting catalytic activities that enable the substitution of natural enzyme. This review explains different catalytic activities of GNZs that can be achieved by applying different modifications to their surface. The role of Gold nanoparticles (GNPs) in mimicking oxidoreductase, helicase, phosphatase were introduced. Moreover, the effect of surface properties and modifications on each catalytic activity was thoroughly discussed. The application of GNZs in biosensing and bioassay was classified in five categories based on the combination of the enzyme like activities and enhancing/inhibition of the catalytic activities in presence of the target analyte/s that is realized by proper surface modification engineering. These categories include catalytic activity enhancer, reversible catalytic activity inhibitor, binding selectivity enhancer, agglomeration base, and multienzyme like activity, which are explained and exemplified in this review. It also gives examples of those modifications that enable the application of GNZs for in vivo biosensing and bioassays.

Zobrazit více v PubMed

Wei H., Wang E.K. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 2013;42:6060–6093. doi: 10.1039/c3cs35486e. PubMed DOI

Jiang B., Liang M.M. Advances in single-atom nanozymes research(dagger) Chin. J. Chem. 2021;39:174–180. doi: 10.1002/cjoc.202000383. DOI

Manea F., Houillon F.B., Pasquato L., Scrimin P. Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem., Int. Ed. 2004;43:6165–6169. doi: 10.1002/anie.200460649. PubMed DOI

Liu L., Jiang H., Wang X.M. Functionalized gold nanomaterials as biomimetic nanozymes and biosensing actuators. Trends Anal. Chem. 2021;143 doi: 10.1016/j.trac.2021.116376. DOI

Bera S.C., Sanyal K., Senapati D., Mishra P.P. Conformational changes followed by complete unzipping of DNA double helix by charge-tuned gold nanoparticles. J. Phys. Chem. B. 2016;120:4213–4220. doi: 10.1021/acs.jpcb.6b01323. PubMed DOI

Das B., Franco J.L., Logan N., Balasubramanian P., Kim M.I., Cao C. Nanozymes in point-of-care diagnosis: an emerging futuristic approach for biosensing. Nano-Micro Lett. 2021;13:193. doi: 10.1007/s40820-021-00717-0. PubMed DOI PMC

Ashrafi A.M., Bytesnikova Z., Barek J., Richtera L., Adam V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens. Bioelectron. 2021;192 doi: 10.1016/j.bios.2021.113494. PubMed DOI

Sharifi M., Hosseinali S.H., Yousefvand P., Salihi A., Shelcha M.S., Aziz F.M., Jouyatalaei A., Hasan A., Falahati M. Gold nanozyme: biosensing and therapeutic activities. Mater. Sci. Eng. C. 2020;108 doi: 10.1016/j.msec.2019.110422. PubMed DOI

Martinez S., Veth L., Lainer B., Dydio P. Challenges and opportunities in multicatalysis. ACS Catal. 2021;11:3891–3915. doi: 10.1021/acscatal.0c05725. DOI

Li M.L., Lu D.C., You R.Y., Shen H.Y., Zhu L.J., Lin Q.Q., Lu Y.D. Surface-enhanced Raman scattering biosensor based on self-assembled gold nanorod arrays for rapid and sensitive detection of tyrosinase. J. Phys. Chem. C. 2022;126:12651–12659. doi: 10.1021/acs.jpcc.2c03408. DOI

Frey P.A., Hegeman A.D. vol. 36. 2008. pp. 247–248. (Enzymatic Reaction Mechanisms). Oxford, New York.

Gao L.Z., Zhuang J., Nie L., Zhang J.B., Zhang Y., Gu N., Wang T.H., Feng J., Yang D.L., Perrett S., Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007;2:577–583. doi: 10.1038/nnano.2007.260. PubMed DOI

Jv Y., Li B.X., Cao R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010;46:8017–8019. doi: 10.1039/c0cc02698k. PubMed DOI

Chen Y.P., Xianyu Y.L., Jiang X.Y. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res. 2017;50:310–319. doi: 10.1021/acs.accounts.6b00506. PubMed DOI

Huang L.J., Sun D.W., Pu H.B., Wei Q.Y. Development of nanozymes for food quality and safety detection: principles and recent applications. Compr. Rev. Food Sci. Food Saf. 2019;18:1496–1513. doi: 10.1111/1541-4337.12485. PubMed DOI

Zhang R.F., Yan X.Y., Fan K.L. Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2021;2:534–547. doi: 10.1021/accountsmr.1c00074. DOI

Wheeldon I., Minteer S.D., Banta S., Barton S.C., Atanassov P., Sigman M. Substrate channelling as an approach to cascade reactions. Nat. Chem. 2016;8:299–309. doi: 10.1038/nchem.2459. PubMed DOI

Chatterjee B., Das S.J., Anand A., Sharma T.K. Nanozymes and aptamer-based biosensing. Mater. Sci. Energy Technol. 2020;3:127–135. doi: 10.1016/j.mset.2019.08.007. DOI

Wu J.J.X., Wang X.Y., Wang Q., Lou Z.P., Li S.R., Zhu Y.Y., Qin L., Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II) Chem. Soc. Rev. 2019;48:1004–1076. doi: 10.1039/c8cs00457a. PubMed DOI

Tang G., He J., Liu J., Yan X., Fan K. Nanozyme for tumor therapy: surface modification matters. Explorations. 2021;1:75–89. doi: 10.1002/EXP.20210005. PubMed DOI PMC

Mahmudunnabi R.G., Farhana F.Z., Kashaninejad N., Firoz S.H., Shim Y.B., Shiddiky M.J.A. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst. 2020;145:4398–4420. doi: 10.1039/d0an00558d. PubMed DOI

Della Pina C., Falletta E., Rossi M. Update on selective oxidation using gold. Chem. Soc. Rev. 2012;41:350–369. doi: 10.1039/c1cs15089h. PubMed DOI

Shcherbakov V., Denisov S.A., Mostafavi M. A mechanistic study of gold nanoparticles catalysis of O2 reduction by ascorbate and hydroethidine, investigating reactive oxygen species reactivity. RSC Adv. 2023;13:8557–8563. doi: 10.1039/D3RA00443K. PubMed DOI PMC

Zhuang S.L., Liao L.W., Li M.B., Yao C.H., Zhao Y., Dong H.W., Li J., Deng H.T., Li L.L., Wu Z.K. The fcc structure isomerization in gold nanoclusters. Nanoscale. 2017;9:14809–14813. doi: 10.1039/c7nr05239a. PubMed DOI

Shen X.M., Liu W.Q., Gao X.J., Lu Z.H., Wu X.C., Gao X.F. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J. Am. Chem. Soc. 2015;137:15882–15891. doi: 10.1021/jacs.5b10346. PubMed DOI

Jiang D.W., Ni D.L., Rosenkrans Z.T., Huang P., Yan X.Y., Cai W.B. Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 2019;48:3683–3704. doi: 10.1039/c8cs00718g. PubMed DOI PMC

Li J.N., Liu W.Q., Wu X.C., Gao X.F. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials. 2015;48:37–44. doi: 10.1016/j.biomaterials.2015.01.012. PubMed DOI

Zhang D.C., Shen N., Zhang J.R., Zhu J.M., Guo Y., Xu L. A novel nanozyme based on selenopeptide-modified gold nanoparticles with a tunable glutathione peroxidase activity. RSC Adv. 2020;10:8685–8691. doi: 10.1039/c9ra10262k. PubMed DOI PMC

Ahmed S.R., Chen A.C. In situ enzymatic generation of gold nanoparticles for nanozymatic label-free detection of acid phosphatase. ACS Appl. Nano Mater. 2020;3:9462–9469. doi: 10.1021/acsanm.0c02067. DOI

Navalon S., Martin R., Alvaro M., Garcia H. Gold on diamond nanoparticles as a highly efficient Fenton catalyst. Angew. Chem., Int. Ed. 2010;49:8403–8407. doi: 10.1002/anie.201003216. PubMed DOI

Liu T.T., Li Z.W., Chen M.H., Zhao H.J., Zheng Z.K., Cui L., Zhang X.M. Sensitive electrochemical biosensor for Uracil-DNA glycosylase detection based on self-linkable hollow Mn/Ni layered doubled hydroxides as oxidase-like nanozyme for cascade signal amplification. Biosens. Bioelectron. 2021;194 doi: 10.1016/j.bios.2021.113607. PubMed DOI

Deshmukh A.R., Aloui H., Kim B.S. Novel biogenic gold nanoparticles catalyzing multienzyme cascade reaction: glucose oxidase and peroxidase mimicking activity. Chem. Eng. J. 2021;421 doi: 10.1016/j.cej.2020.127859. DOI

Nishigaki J., Ishida T., Honma T., Haruta M. Oxidation of beta-nicotinamide adenine dinucleotide (NADH) by Au cluster and nanoparticle catalysts aiming for coenzyme regeneration in enzymatic glucose oxidation. ACS Sustain. Chem. Eng. 2020;8:10413–10422. doi: 10.1021/acssuschemeng.0c01893. DOI

Yaseen M., Humayun M., Khan A., Usman M., Ullah H., Tahir A.A., Ullah H. Preparation, functionalization, modification, and applications of nanostructured gold: a critical review. Energies. 2021;14:1278. doi: 10.3390/en14051278. DOI

Cai R., Gao X.S., Zhang C.Q., Hu Z.J., Ji Y.L., Liu J.B., Wu X.C. Improving peroxidase activity of gold nanorod nanozymes by dragging substrates to the catalysis sites via cysteine modification. Nanotechnology. 2021;32 doi: 10.1088/1361-6528/ac1e53. PubMed DOI

Gao W., He J., Chen L., Meng X., Ma Y., Cheng L., Tu K., Gao X., Liu C., Zhang M., Fan K., Pang D.-W., Yan X. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat. Commun. 2023;14:160. doi: 10.1038/s41467-023-35828-2. PubMed DOI PMC

Liu C., Fan W.B., Cheng W.X., Gu Y.P., Chen Y.M., Zhou W.H., Yu X.F., Chen M.H., Zhu M.R., Fan K.L., Luo Q.Y. Red emissive carbon dot superoxide dismutase nanozyme for bioimaging and ameliorating acute lung injury. Adv. Funct. Mater. 2023;33 doi: 10.1002/adfm.202213856. DOI

Chong Y., Liu Q., Ge C.C. Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications. Nano Today. 2021;37 doi: 10.1016/j.nantod.2021.101076. DOI

Rosca D.A., Wright J.A., Hughes D.L., Bochmann M. Gold peroxide complexes and the conversion of hydroperoxides into gold hydrides by successive oxygen-transfer reactions. Nat. Commun. 2013;4:2167. doi: 10.1038/ncomms3167. PubMed DOI

Stasyuk N., Gayda G., Kavetskyy T., Gonchar M. Nanozymes with reductase-like activities: antioxidant properties and electrochemical behavior. RSC Adv. 2022;12:2026–2035. doi: 10.1039/d1ra08127f. PubMed DOI PMC

Singh P., Roy S., Jaiswal A. Cubic gold nanorattles with a solid octahedral core and porous shell as efficient catalyst: immobilization and kinetic analysis. J. Phys. Chem. C. 2017;121:22914–22925. doi: 10.1021/acs.jpcc.7b07748. DOI

Zhao P.X., Feng X.W., Huang D.S., Yang G.Y., Astruc D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord. Chem. Rev. 2015;287:114–136. doi: 10.1016/j.ccr.2015.01.002. DOI

Ruiz-Gutierrez N., Rieu M., Ouellet J., Allemand J.F., Croquette V., Le Hir H. Methods in Enzymology. Academic Press; 2022. Chapter Thirteen - novel approaches to study helicases using magnetic tweezers; pp. 359–403. PubMed

Borghei Y.S., Hosseini M., Ganjali M.R. Oxidase-like Catalytic activity of Cys-AuNCs upon visible light irradiation and its application for visual miRNA detection. Sensor. Actuator. B Chem. 2018;273:1618–1626. doi: 10.1016/j.snb.2018.07.061. DOI

Cabugao K.G., Timm C.M., Carrell A.A., Childs J., Lu T.Y.S., Pelletier D.A., Weston D.J., Norby R.J. Root and rhizosphere bacterial phosphatase activity varies with tree species and soil phosphorus availability in Puerto Rico tropical forest. Front. Plant Sci. 2017;8:1834. doi: 10.3389/fpls.2017.01834. PubMed DOI PMC

Lyu Y., Morillas-Becerril L., Mancin F., Scrimin P. Hydrolytic cleavage of nerve agent simulants by gold nanozymes. J. Hazard Mater. 2021;415 doi: 10.1016/j.jhazmat.2021.125644. PubMed DOI

Chen J.L.Y., Pezzato C., Scrimin P., Prins L.J. Chiral nanozymes-gold nanoparticle-based transphosphorylation catalysts capable of enantiomeric discrimination. Chem. Eur J. 2016;22:7028–7032. doi: 10.1002/chem.201600853. PubMed DOI

Wei H., Gao L.Z., Fan K.L., Liu J.W., He J.Y., Qu X.G., Dong S.J., Wang E.K., Yan X.Y., Nanozymes A clear definition with fuzzy edges. Nano Today. 2021;40 doi: 10.1016/j.nantod.2021.101269. DOI

Tao Y., Lin Y.H., Huang Z.Z., Ren J.S., Qu X.G. Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013;25:2594–2599. doi: 10.1002/adma.201204419. PubMed DOI

Dashtestani F., Ghourchian H., Najafi A. Silver-gold-apoferritin nanozyme for suppressing oxidative stress during cryopreservation. Mater. Sci. Eng. C. 2019;94:831–840. doi: 10.1016/j.msec.2018.10.008. PubMed DOI

Sun H.L., Zhang J.B., Wang M.J., Su X.G. Ratiometric fluorometric and colorimetric dual-mode sensing of glucose based on gold-platinum bimetallic nanoclusters. Microchem. J. 2022;179 doi: 10.1016/j.microc.2022.107574. DOI

Liu C.P., Wu T.H., Liu C.Y., Chen K.C., Chen Y.X., Chen G.S., Lin S.Y. Self-supplying O-2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small. 2017;13 doi: 10.1002/smll.201700278. PubMed DOI

Ma M.Z., Cao J.J., Fang A.S., Xu Z.H., Zhang T.Y., Shi F. Detection and difference analysis of the enzyme activity of colloidal gold nanoparticles with negatively charged surfaces prepared by different reducing agents. Front. Chem. 2022;9 doi: 10.3389/fchem.2021.812083. PubMed DOI PMC

Swaminathan R., Devi M.C., Rajendran L., Venugopal K. Sensitivity and resistance of amperometric biosensors in substrate inhibition processes. J. Electroanal. Chem. 2021;895 doi: 10.1016/j.jelechem.2021.115527. DOI

Huyke D.A., Ramachandran A., Bashkirov V.I., Kotseroglou E.K., Kotseroglou T., Santiago J.G. Enzyme kinetics and detector sensitivity determine limits of detection of amplification-free CRISPR-cas12 and CRISPR-cas13 diagnostics. Anal. Chem. 2022;94:9826–9834. doi: 10.1021/acs.analchem.2c01670. PubMed DOI

Radenkovic S., Antic M., Savic N.D., Glisic B.D. The nature of the Au-N bond in gold(III) complexes with aromatic nitrogen-containing heterocycles: the influence of Au(III) ions on the ligand aromaticity. New J. Chem. 2017;41:12407–12415. doi: 10.1039/c7nj02634j. DOI

Weerathunge P., Ramanathan R., Torok V.A., Hodgson K., Xu Y., Goodacre R., Behera B.K., Bansal V. Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor. Anal. Chem. 2019;91:3270–3276. doi: 10.1021/acs.analchem.8b03300. PubMed DOI

Zhang W., Wang C., Guan L.H., Peng M.H., Li K., Lin Y.Q. A non-enzymatic electrochemical biosensor based on Au@PBA(Ni-Fe):MoS2 nanocubes for stable and sensitive detection of hydrogen peroxide released from living cells. J. Mat. Chem. B. 2019;7:7704–7712. doi: 10.1039/c9tb02059d. PubMed DOI

Zhao L., Niu G.M., Gao F.C., Lu K.D., Sun Z.W., Li H., Stenzel M., Liu C., Jiang Y.Y. Gold nanorods (AuNRs) and zeolitic imidazolate framework-8 (ZIF-8) core-shell nanostructure-based electrochemical sensor for detecting neurotransmitters. ACS Omega. 2021;6:33149–33158. doi: 10.1021/acsomega.1c05529. PubMed DOI PMC

Wang S., Chen W., Liu A.L., Hong L., Deng H.H., Lin X.H. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem. 2012;13:1199–1204. doi: 10.1002/cphc.201100906. PubMed DOI

Ray S., Biswas R., Banerjee R., Biswas P. A gold nanoparticle-intercalated mesoporous silica-based nanozyme for the selective colorimetric detection of dopamine. Nanoscale Adv. 2020;2:734–745. doi: 10.1039/c9na00508k. PubMed DOI PMC

Zhang J.J., Huang Z.T., Xie Y.Z.Y., Jiang X.Y. Modulating the catalytic activity of gold nanoparticles using amine-terminated ligands. Chem. Sci. 2022;13:1080–1087. doi: 10.1039/d1sc05933e. PubMed DOI PMC

Liu C.P., Chen K.C., Su C.F., Yu P.Y., Lee P.W. Revealing the active site of gold nanoparticles for the peroxidase-like activity: the determination of surface accessibility. Catalysts. 2019;9:517. doi: 10.3390/catal9060517. DOI

Liu Y., Chen Z., Shao Z.F., Guo R. Single gold nanoparticle-driven heme cofactor nanozyme as an unprecedented oxidase mimetic. Chem. Commun. 2021;57:3399–3402. doi: 10.1039/d1cc00279a. PubMed DOI

Liu L., Jiang H., Wang X.M. Bivalent metal ions tethered fluorescent gold nanoparticles as a reusable peroxidase mimic nanozyme. J. Anal. Test. 2019;3:269–276. doi: 10.1007/s41664-019-00109-9. DOI

Liu L., Jiang H., Wang X.M. Alkaline phosphatase-responsive Zn2+ double-triggered nucleotide capped gold nanoclusters/alginate hydrogel with recyclable nanozyme capability. Biosens. Bioelectron. 2021;173 doi: 10.1016/j.bios.2020.112786. PubMed DOI

Tao X.Q., Wang X., Liu B.W., Liu J.W. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens. Bioelectron. 2020;168 doi: 10.1016/j.bios.2020.112537. PubMed DOI

Meng F.Y., Xu Y.Y., Dong W.F., Tang Y.G., Miao P. A PCR-free voltammetric telomerase activity assay using a substrate primer on a gold electrode and DNA-triggered capture of gold nanoparticles. Microchim. Acta. 2018;185:398. doi: 10.1007/s00604-018-2936-x. PubMed DOI

Weerathunge P., Ramanathan R., Shukla R., Sharma T.K., Bansal V. Aptamer-Controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 2014;86:11937–11941. doi: 10.1021/ac5028726. PubMed DOI

Zheng X.X., Liu Q., Jing C., Li Y., Li D., Luo W.J., Wen Y.Q., He Y., Huang Q., Long Y.T., Fan C.H. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew. Chem., Int. Ed. 2011;50:11994–11998. doi: 10.1002/anie.201105121. PubMed DOI

Zhou P.P., Jia S.S., Pan D., Wang L.H., Gao J.M., Lu J.X., Shi J.Y., Tang Z.S., Liu H.J. Reversible regulation of catalytic activity of gold nanoparticles with DNA nanomachines. Sci. Rep. 2015;5 doi: 10.1038/srep14402. PubMed DOI PMC

Lien C.W., Chen Y.C., Chang H.T., Huang C.C. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale. 2013;5:8227–8234. doi: 10.1039/c3nr01836a. PubMed DOI

Rashid J.I.A., Yusof N.A., Abdullah J., Hashim U., Hajian R. Surface modifications to boost sensitivities of electrochemical biosensors using gold nanoparticles/silicon nanowires and response surface methodology approach. J. Mater. Sci. 2016;51:1083–1097. doi: 10.1007/s10853-015-9438-6. DOI

Tonga G.Y., Jeong Y.D., Duncan B., Mizuhara T., Mout R., Das R., Kim S.T., Yeh Y.C., Yan B., Hou S., Rotello V.M. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 2015;7:597–603. doi: 10.1038/nchem.2284. PubMed DOI PMC

Fedeli S., Im J., Gopalakrishnan S., Elia J.L., Gupta A., Kim D., Rotello V.M. Nanomaterial-based bioorthogonal nanozymes for biological applications. Chem. Soc. Rev. 2021;50:13467–13480. doi: 10.1039/d0cs00659a. PubMed DOI PMC

Niu X.H., Cheng N., Ruan X.F., Du D., Lin Y.H. Review-nanozyme-based immunosensors and immunoassays: recent developments and future trends. J. Electrochem. Soc. 2019;167 doi: 10.1149/2.0082003jes. DOI

Ahmed S.R., Corredor J.C., Nagy É., Neethirajan S. Amplified visual immunosensor integrated with nanozyme for ultrasensitive detection of avian influenza virus. Nanotheranostics. 2017;1:338–345. doi: 10.7150/ntno.20758. PubMed DOI PMC

Lian W.J., Liu S., Yu J.H., Xing X.R., Li J., Cui M., Huang J.D. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens. Bioelectron. 2012;38:163–169. doi: 10.1016/j.bios.2012.05.017. PubMed DOI

Fan L., Tian Y.S., Lou D.D., Wu H.A., Cui Y., Gu N., Zhang Y. Catalytic gold-platinum alloy nanoparticles and a novel glucose oxidase mimic with enhanced activity and selectivity constructed by molecular imprinting. Anal. Methods. 2019;11:4586–4592. doi: 10.1039/c9ay01308c. DOI

He J.B., Zhang L., Xu L.H., Kong F.F., Xu Z.X. Development of nanozyme-labeled biomimetic immunoassay for determination of sulfadiazine residue in foods. Adv. Polym. Technol. 2020;2020 doi: 10.1155/2020/7647580. DOI

Abnous K., Danesh N.M., Ramezani M., Taghdisi S.M., Emrani A.S. A novel colorimetric aptasensor for ultrasensitive detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles. Anal. Chim. Acta. 2018;1020:110–115. doi: 10.1016/j.aca.2018.02.066. PubMed DOI

Liu Z.D., Zhu H.Y., Zhao H.X., Huang C.Z. Highly selective colorimetric detection of spermine in biosamples on basis of the non-crosslinking aggregation of ssDNA-capped gold nanoparticles. Talanta. 2013;106:255–260. doi: 10.1016/j.talanta.2012.10.079. PubMed DOI

Ma Q., Qiao J., Liu Y.F., Qi L. Colorimetric monitoring of serum dopamine with promotion activity of gold nanocluster-based nanozymes. Analyst. 2021;146:6615–6620. doi: 10.1039/d1an01511g. PubMed DOI

Wang Z., Zhao Y., Hou Y., Tang G., Zhang R., Yang Y., Yan X., Fan K. A thrombin-activated peptide-templated nanozyme for remedying ischemic stroke via thrombolytic and neuroprotective actions. Adv. Mater. 2023;35 doi: 10.1002/adma.202210144. PubMed DOI

Chen J.X., Wu W.W., Huang L., Ma Q., Dong S.J. Self-indicative gold nanozyme for H2O2 and glucose sensing. Chem. Eur J. 2019;25:11940–11944. doi: 10.1002/chem.201902288. PubMed DOI

Zandieh M., Liu J.W. Nanozyme catalytic turnover and self-limited reactions. ACS Nano. 2021;15:15645–15655. doi: 10.1021/acsnano.1c07520. PubMed DOI

Ouyang Y., Fadeev M., Zhang P., Carmieli R., Li J., Sohn Y.S., Karmi O., Nechushtai R., Pikarsky E., Fan C.H., Willner I. Aptamer-modified Au nanoparticles: functional nanozyme bioreactors for cascaded catalysis and catalysts for chemodynamic treatment of cancer cells. ACS Nano. 2022;16:18232–18243. doi: 10.1021/acsnano.2c05710. PubMed DOI PMC

Barnoy E.A., Motiei M., Tzror C., Rahimipour S., Popovtzer R., Fixler D. Biological logic gate using gold nanoparticles and fluorescence lifetime imaging microscopy. ACS Appl. Nano Mater. 2019;2:6527–6536. doi: 10.1021/acsanm.9b01457. DOI

Lai Y.H., Sun S.C., Chuang M.C. Biosensors with built-in biomolecular logic gates for practical applications. Biosensors. 2014;4:273–300. doi: 10.3390/bios4030273. PubMed DOI PMC

Liu H.L., Li Y.H., Sun S., Xin Q., Liu S.H., Mu X.Y., Yuan X., Chen K., Wang H., Varga K., Mi W.B., Yang J., Zhang X.D. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat. Commun. 2021;12:114. doi: 10.1038/s41467-020-20275-0. PubMed DOI PMC

Lin X.D., Liu Y.Q., Tao Z.H., Gao J.T., Deng J.K., Yin J.J., Wang S. Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosens. Bioelectron. 2017;94:471–477. doi: 10.1016/j.bios.2017.01.008. PubMed DOI

Lin J.S., Wang Q., Wang X.Y., Zhu Y.Y., Zhou X., Wei H. Gold alloy-based nanozyme sensor arrays for biothiol detection. Analyst. 2020;145 doi: 10.1039/D0AN00451K. (vol 53, pg 964, 2020) 4050-4050. PubMed DOI

Loynachan C.N., Soleimany A.P., Dudani J.S., Lin Y.Y., Najer A., Bekdemir A., Chen Q., Bhatia S.N., Stevens M.M. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 2019;14:883–890. doi: 10.1038/s41565-019-0527-6. PubMed DOI PMC

Hu W.C., Younis M.R., Zhou Y., Wang C., Xia X.H. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small. 2020;16 doi: 10.1002/smll.202000553. PubMed DOI

Smutok O., Kavetskyy T., Prokopiv T., Serkiz R., Wojnarowska-Nowak R., Sausa O., Novak I., Berek D., Melman A., Gonchar M. New micro/nanocomposite with peroxidase-like activity in construction of oxidases-based amperometric biosensors for ethanol and glucose analysis. Anal. Chim. Acta. 2021;1143:201–209. doi: 10.1016/j.aca.2020.11.052. PubMed DOI

Zhang L.Y., Fan C., Liu M., Liu F.J., Bian S.S., Du S.Y., Zhu S.Y., Wang H. Biominerized gold-Hemin@MOF composites with peroxidase-like and gold catalysis activities: a high-throughput colorimetric immunoassay for alpha-fetoprotein in blood by ELISA and gold-catalytic silver staining. Sensor. Actuator. B Chem. 2018;266:543–552. doi: 10.1016/j.snb.2018.03.153. DOI

Huang W., Xu Y., Wang Z.P., Liao K., Zhang Y., Sun Y.M. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells. Talanta. 2022;249 doi: 10.1016/j.talanta.2022.123612. PubMed DOI

Long L., Cai R., Liu J.B., Wu X.C. A novel nanoprobe based on core-shell Au@Pt@mesoporous SiO(2)Nanozyme with enhanced activity and stability for mumps virus diagnosis. Front. Chem. 2020;8:463. doi: 10.3389/fchem.2020.00463. PubMed DOI PMC

Tao Y., Ju E.G., Ren J.S., Qu X.G. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015;27:1097–1104. doi: 10.1002/adma.201405105. PubMed DOI

Ji X.Y., Lu Q., Sun X.H., Zhao L.Y., Zhang Y.H., Yao J.S., Zhang X., Zhao H. Dual-active Au@PNIPAm nanozymes for glucose detection and intracellular H2O2 modulation. Langmuir. 2022:8077–8086. doi: 10.1021/acs.langmuir.2c00911. PubMed DOI

Nirala N.R., Prakash R., Vinita One step synthesis of AuNPs@MoS2-QDs composite as a robust peroxidase- mimetic for instant unaided eye detection of glucose inserum, saliva and tear. Sensor. Actuator. B Chem. 2018;263:109–119. doi: 10.1016/j.snb.2018.02.085. DOI

Zhu X.L., Mao X.X., Wang Z.H., Feng C., Chen G.F., Li G.X. Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res. 2017;10:959–970. doi: 10.1007/s12274-016-1354-9. DOI

Czescik J., Zamolo S., Darbre T., Rigo R., Sissi C., Pecina A., Riccardi L., De Vivo M., Mancin F., Scrimin P. A gold nanoparticle nanonuclease relying on a Zn(II) mononuclear complex. Angew. Chem. Int. Ed. 2021;60:1423–1432. doi: 10.1002/anie.202012513. PubMed DOI PMC

Mao M.X., Zheng R., Peng C.F., Wei X.L. DNA-gold nanozyme-modified paper device for enhanced colorimetric detection of mercury ions. Biosensors. 2020;10:211. doi: 10.3390/bios10120211. PubMed DOI PMC

Jin G.H., Ko E., Kim M.K., Tran V.K., Son S.E., Geng Y., Hur W., Seong G.H. Graphene oxide-gold nanozyme for highly sensitive electrochemical detection of hydrogen peroxide. Sensor. Actuator. B Chem. 2018;274:201–209. doi: 10.1016/j.snb.2018.07.160. DOI

Sun S.M., Zhao R., Feng S.M., Xie Y.L. Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity. Microchim. Acta. 2018;185:535. doi: 10.1007/s00604-018-3078-x. PubMed DOI

Ouyang H.X., Ling S.M., Liang A.H., Jiang Z.L. A facile aptamer-regulating gold nanoplasmonic SERS detection strategy for trace lead ions. Sensor. Actuator. B Chem. 2018;258:739–744. doi: 10.1016/j.snb.2017.12.009. DOI

Das R., Dhiman A., Kapil A., Bansal V., Sharma T.K. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem. 2019;411:1229–1238. doi: 10.1007/s00216-018-1555-z. PubMed DOI

Wang C.S., Liu C., Luo J.B., Tian Y.P., Zhou N.D. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta. 2016;936:75–82. doi: 10.1016/j.aca.2016.07.013. PubMed DOI

Shah M.M., Ren W., Irudayaraj J., Sajini A.A., Ali M.I., Ahmad B. Colorimetric detection of organophosphate pesticides based on acetylcholinesterase and cysteamine capped gold nanoparticles as nanozyme. Sensors. 2021;21:8050. doi: 10.3390/s21238050. PubMed DOI PMC

Bhagat S., Vallabani N.V.S., Shutthanandan V., Bowden M., Karakoti A.S., Singh S. Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J. Colloid Interface Sci. 2018;513:831–842. doi: 10.1016/j.jcis.2017.11.064. PubMed DOI

Zhang Z.J., Zhang X.H., Liu B.W., Liu J.W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017;139:5412–5419. doi: 10.1021/jacs.7b00601. PubMed DOI

Liu M., Zhao H.M., Chen S., Yu H.T., Quan X. Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano. 2012;6:3142–3151. doi: 10.1021/nn3010922. PubMed DOI

Kumar S., Bhushan P., Bhattacharya S. Facile synthesis of Au@Ag-hemin decorated reduced graphene oxide sheets: a novel peroxidase mimetic for ultrasensitive colorimetric detection of hydrogen peroxide and glucose. RSC Adv. 2017;7:37568–37577. doi: 10.1039/c7ra06973a. DOI

Wu L., Yin W.M., Tan X.C., Wang P., Ding F., Zhang H., Wang B.R., Zhang W.Y., Han H.Y. Direct reduction of HAuCl4 for the visual detection of intracellular hydrogen peroxide based on Au-Pt/SiO2 nanospheres. Sensor. Actuator. B Chem. 2017;248:367–373. doi: 10.1016/j.snb.2017.03.166. DOI

Hu Y.H., Cheng H.J., Zhao X.Z., Wu J.J., Muhammad F., Lin S.C., He J., Zhou L.Q., Zhang C.P., Deng Y., Wang P., Zhou Z.Y., Nie S.M., Wei H. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano. 2017;11:5558–5566. doi: 10.1021/acsnano.7b00905. PubMed DOI

Liu Y., Ding D., Zhen Y.L., Guo R. Amino acid-mediated 'turn-off/turn-on' nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens. Bioelectron. 2017;92:140–146. doi: 10.1016/j.bios.2017.01.036. PubMed DOI

Chang Y.Q., Zhang Z., Hao J.H., Yang W.S., Tang J.L. BSA-stabilized Au clusters as peroxidase mimetic for colorimetric detection of Ag+ Sensor. Actuator. B Chem. 2016;232:692–697. doi: 10.1016/j.snb.2016.04.039. DOI

Liu Y.L., Fu W.L., Li C.M., Huang C.Z., Li Y.F. Gold nanoparticles immobilized on metal-organic frameworks with enhanced catalytic performance for DNA detection. Anal. Chim. Acta. 2015;861:55–61. doi: 10.1016/j.aca.2014.12.032. PubMed DOI

Hizir M.S., Top M., Balcioglu M., Rana M., Robertson N.M., Shen F.S., Sheng J., Yigit M.V. Multiplexed activity of perAuxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal. Chem. 2016;88:600–605. doi: 10.1021/acs.analchem.5b03926. PubMed DOI

Yang J.E., Lu Y.X., Ao L., Wang F.Y., Jing W.J., Zhang S.C., Liu Y.Y. Colorimetric sensor array for proteins discrimination based on the tunable peroxidase-like activity of AuNPs-DNA conjugates. Sensor. Actuator. B Chem. 2017;245:66–73. doi: 10.1016/j.snb.2017.01.119. DOI

Hu J.T., Ni P.J., Dai H.C., Sun Y.J., Wang Y.L., Jiang S., Li Z. Aptamer-based colorimetric biosensing of abrin using catalytic gold nanoparticles. Analyst. 2015;140:3581–3586. doi: 10.1039/c5an00107b. PubMed DOI

Tian J.P. Aptamer-based colorimetric detection of various targets based on catalytic Au NPs/Graphene nanohybrids. Sens. BioSens. Res. 2019;22 doi: 10.1016/j.sbsr.2019.100258. DOI

Gao L., Liu M.Q., Ma G.F., Wang Y.L., Zhao L.N., Yuan Q., Gao F.P., Liu R., Zhai J., Chai Z.F., Zhao Y.L., Gao X.Y. Peptide-conjugated gold nanoprobe: intrinsic nanozyme-linked immunsorbant assay of integrin expression level on cell membrane. ACS Nano. 2015;9:10979–10990. doi: 10.1021/acsnano.5b04261. PubMed DOI

Masud M.K., Yadav S., Isam M.N., Nguyen N.T., Salomon C., Kline R., Alamri H.R., Alothman Z.A., Yamauchi Y., Hossain M.S.A., Shiddiky M.J.A. Gold-loaded nanoporous ferric oxide nanocubes with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of autoantibody. Anal. Chem. 2017;89:11005–11013. doi: 10.1021/acs.analchem.7b02880. PubMed DOI

Hu L.Z., Liao H., Feng L.Y., Wang M., Fu W.S. Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Anal. Chem. 2018;90:6247–6252. doi: 10.1021/acs.analchem.8b00885. PubMed DOI

Liu J., Zhang W., Zhang H.L., Yang Z.Y., Li T.R., Wang B.D., Huo X., Wang R., Chen H.T. A multifunctional nanoprobe based on Au-Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem. Commun. 2013;49:4938–4940. doi: 10.1039/c3cc41984c. PubMed DOI

Maji S.K., Mandal A.K., Nguyen K.T., Borah P., Zhao Y.L. Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl. Mater. Interfaces. 2015;7:9807–9816. doi: 10.1021/acsami.5b01758. PubMed DOI

Tao Y., Li M.Q., Kim B., Auguste D.T. Incorporating gold nanoclusters and target-directed liposomes as a synergistic amplified colorimetric sensor for HER2-positive breast cancer cell detection. Theranostics. 2017;7:899–911. doi: 10.7150/thno.17927. PubMed DOI PMC

Khoris I.M., Takemura K., Lee J., Hara T., Abe F., Suzuki T., Park E.Y. Enhanced colorimetric detection of norovirus using in-situ growth of Ag shell on Au NPs. Biosens. Bioelectron. 2019;126:425–432. doi: 10.1016/j.bios.2018.10.067. PubMed DOI

Zhao C., Hong C.Y., Lin Z.Z., Chen X.M., Huang Z.Y. Detection of Malachite Green using a colorimetric aptasensor based on the inhibition of the peroxidase-like activity of gold nanoparticles by cetyltrimethylammonium ions. Microchim. Acta. 2019;186:322. doi: 10.1007/s00604-019-3436-3. PubMed DOI

Mcvey C., Logan N., Thanh N.T.K., Elliott C., Cao C. Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 2019;12:509–516. doi: 10.1007/s12274-018-2241-3. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...