Surface modification strategies and the functional mechanisms of gold nanozyme in biosensing and bioassay
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
37214551
PubMed Central
PMC10199192
DOI
10.1016/j.mtbio.2023.100656
PII: S2590-0064(23)00116-3
Knihovny.cz E-zdroje
- Klíčová slova
- Biosensing and bioassay, Catalytic activity, Gold nanozyme, Surface modification,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Gold nanozymes (GNZs) have been widely used in biosensing and bioassay due to their interesting catalytic activities that enable the substitution of natural enzyme. This review explains different catalytic activities of GNZs that can be achieved by applying different modifications to their surface. The role of Gold nanoparticles (GNPs) in mimicking oxidoreductase, helicase, phosphatase were introduced. Moreover, the effect of surface properties and modifications on each catalytic activity was thoroughly discussed. The application of GNZs in biosensing and bioassay was classified in five categories based on the combination of the enzyme like activities and enhancing/inhibition of the catalytic activities in presence of the target analyte/s that is realized by proper surface modification engineering. These categories include catalytic activity enhancer, reversible catalytic activity inhibitor, binding selectivity enhancer, agglomeration base, and multienzyme like activity, which are explained and exemplified in this review. It also gives examples of those modifications that enable the application of GNZs for in vivo biosensing and bioassays.
Zobrazit více v PubMed
Wei H., Wang E.K. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 2013;42:6060–6093. doi: 10.1039/c3cs35486e. PubMed DOI
Jiang B., Liang M.M. Advances in single-atom nanozymes research(dagger) Chin. J. Chem. 2021;39:174–180. doi: 10.1002/cjoc.202000383. DOI
Manea F., Houillon F.B., Pasquato L., Scrimin P. Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem., Int. Ed. 2004;43:6165–6169. doi: 10.1002/anie.200460649. PubMed DOI
Liu L., Jiang H., Wang X.M. Functionalized gold nanomaterials as biomimetic nanozymes and biosensing actuators. Trends Anal. Chem. 2021;143 doi: 10.1016/j.trac.2021.116376. DOI
Bera S.C., Sanyal K., Senapati D., Mishra P.P. Conformational changes followed by complete unzipping of DNA double helix by charge-tuned gold nanoparticles. J. Phys. Chem. B. 2016;120:4213–4220. doi: 10.1021/acs.jpcb.6b01323. PubMed DOI
Das B., Franco J.L., Logan N., Balasubramanian P., Kim M.I., Cao C. Nanozymes in point-of-care diagnosis: an emerging futuristic approach for biosensing. Nano-Micro Lett. 2021;13:193. doi: 10.1007/s40820-021-00717-0. PubMed DOI PMC
Ashrafi A.M., Bytesnikova Z., Barek J., Richtera L., Adam V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens. Bioelectron. 2021;192 doi: 10.1016/j.bios.2021.113494. PubMed DOI
Sharifi M., Hosseinali S.H., Yousefvand P., Salihi A., Shelcha M.S., Aziz F.M., Jouyatalaei A., Hasan A., Falahati M. Gold nanozyme: biosensing and therapeutic activities. Mater. Sci. Eng. C. 2020;108 doi: 10.1016/j.msec.2019.110422. PubMed DOI
Martinez S., Veth L., Lainer B., Dydio P. Challenges and opportunities in multicatalysis. ACS Catal. 2021;11:3891–3915. doi: 10.1021/acscatal.0c05725. DOI
Li M.L., Lu D.C., You R.Y., Shen H.Y., Zhu L.J., Lin Q.Q., Lu Y.D. Surface-enhanced Raman scattering biosensor based on self-assembled gold nanorod arrays for rapid and sensitive detection of tyrosinase. J. Phys. Chem. C. 2022;126:12651–12659. doi: 10.1021/acs.jpcc.2c03408. DOI
Frey P.A., Hegeman A.D. vol. 36. 2008. pp. 247–248. (Enzymatic Reaction Mechanisms). Oxford, New York.
Gao L.Z., Zhuang J., Nie L., Zhang J.B., Zhang Y., Gu N., Wang T.H., Feng J., Yang D.L., Perrett S., Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007;2:577–583. doi: 10.1038/nnano.2007.260. PubMed DOI
Jv Y., Li B.X., Cao R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010;46:8017–8019. doi: 10.1039/c0cc02698k. PubMed DOI
Chen Y.P., Xianyu Y.L., Jiang X.Y. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res. 2017;50:310–319. doi: 10.1021/acs.accounts.6b00506. PubMed DOI
Huang L.J., Sun D.W., Pu H.B., Wei Q.Y. Development of nanozymes for food quality and safety detection: principles and recent applications. Compr. Rev. Food Sci. Food Saf. 2019;18:1496–1513. doi: 10.1111/1541-4337.12485. PubMed DOI
Zhang R.F., Yan X.Y., Fan K.L. Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2021;2:534–547. doi: 10.1021/accountsmr.1c00074. DOI
Wheeldon I., Minteer S.D., Banta S., Barton S.C., Atanassov P., Sigman M. Substrate channelling as an approach to cascade reactions. Nat. Chem. 2016;8:299–309. doi: 10.1038/nchem.2459. PubMed DOI
Chatterjee B., Das S.J., Anand A., Sharma T.K. Nanozymes and aptamer-based biosensing. Mater. Sci. Energy Technol. 2020;3:127–135. doi: 10.1016/j.mset.2019.08.007. DOI
Wu J.J.X., Wang X.Y., Wang Q., Lou Z.P., Li S.R., Zhu Y.Y., Qin L., Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II) Chem. Soc. Rev. 2019;48:1004–1076. doi: 10.1039/c8cs00457a. PubMed DOI
Tang G., He J., Liu J., Yan X., Fan K. Nanozyme for tumor therapy: surface modification matters. Explorations. 2021;1:75–89. doi: 10.1002/EXP.20210005. PubMed DOI PMC
Mahmudunnabi R.G., Farhana F.Z., Kashaninejad N., Firoz S.H., Shim Y.B., Shiddiky M.J.A. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst. 2020;145:4398–4420. doi: 10.1039/d0an00558d. PubMed DOI
Della Pina C., Falletta E., Rossi M. Update on selective oxidation using gold. Chem. Soc. Rev. 2012;41:350–369. doi: 10.1039/c1cs15089h. PubMed DOI
Shcherbakov V., Denisov S.A., Mostafavi M. A mechanistic study of gold nanoparticles catalysis of O2 reduction by ascorbate and hydroethidine, investigating reactive oxygen species reactivity. RSC Adv. 2023;13:8557–8563. doi: 10.1039/D3RA00443K. PubMed DOI PMC
Zhuang S.L., Liao L.W., Li M.B., Yao C.H., Zhao Y., Dong H.W., Li J., Deng H.T., Li L.L., Wu Z.K. The fcc structure isomerization in gold nanoclusters. Nanoscale. 2017;9:14809–14813. doi: 10.1039/c7nr05239a. PubMed DOI
Shen X.M., Liu W.Q., Gao X.J., Lu Z.H., Wu X.C., Gao X.F. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J. Am. Chem. Soc. 2015;137:15882–15891. doi: 10.1021/jacs.5b10346. PubMed DOI
Jiang D.W., Ni D.L., Rosenkrans Z.T., Huang P., Yan X.Y., Cai W.B. Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 2019;48:3683–3704. doi: 10.1039/c8cs00718g. PubMed DOI PMC
Li J.N., Liu W.Q., Wu X.C., Gao X.F. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials. 2015;48:37–44. doi: 10.1016/j.biomaterials.2015.01.012. PubMed DOI
Zhang D.C., Shen N., Zhang J.R., Zhu J.M., Guo Y., Xu L. A novel nanozyme based on selenopeptide-modified gold nanoparticles with a tunable glutathione peroxidase activity. RSC Adv. 2020;10:8685–8691. doi: 10.1039/c9ra10262k. PubMed DOI PMC
Ahmed S.R., Chen A.C. In situ enzymatic generation of gold nanoparticles for nanozymatic label-free detection of acid phosphatase. ACS Appl. Nano Mater. 2020;3:9462–9469. doi: 10.1021/acsanm.0c02067. DOI
Navalon S., Martin R., Alvaro M., Garcia H. Gold on diamond nanoparticles as a highly efficient Fenton catalyst. Angew. Chem., Int. Ed. 2010;49:8403–8407. doi: 10.1002/anie.201003216. PubMed DOI
Liu T.T., Li Z.W., Chen M.H., Zhao H.J., Zheng Z.K., Cui L., Zhang X.M. Sensitive electrochemical biosensor for Uracil-DNA glycosylase detection based on self-linkable hollow Mn/Ni layered doubled hydroxides as oxidase-like nanozyme for cascade signal amplification. Biosens. Bioelectron. 2021;194 doi: 10.1016/j.bios.2021.113607. PubMed DOI
Deshmukh A.R., Aloui H., Kim B.S. Novel biogenic gold nanoparticles catalyzing multienzyme cascade reaction: glucose oxidase and peroxidase mimicking activity. Chem. Eng. J. 2021;421 doi: 10.1016/j.cej.2020.127859. DOI
Nishigaki J., Ishida T., Honma T., Haruta M. Oxidation of beta-nicotinamide adenine dinucleotide (NADH) by Au cluster and nanoparticle catalysts aiming for coenzyme regeneration in enzymatic glucose oxidation. ACS Sustain. Chem. Eng. 2020;8:10413–10422. doi: 10.1021/acssuschemeng.0c01893. DOI
Yaseen M., Humayun M., Khan A., Usman M., Ullah H., Tahir A.A., Ullah H. Preparation, functionalization, modification, and applications of nanostructured gold: a critical review. Energies. 2021;14:1278. doi: 10.3390/en14051278. DOI
Cai R., Gao X.S., Zhang C.Q., Hu Z.J., Ji Y.L., Liu J.B., Wu X.C. Improving peroxidase activity of gold nanorod nanozymes by dragging substrates to the catalysis sites via cysteine modification. Nanotechnology. 2021;32 doi: 10.1088/1361-6528/ac1e53. PubMed DOI
Gao W., He J., Chen L., Meng X., Ma Y., Cheng L., Tu K., Gao X., Liu C., Zhang M., Fan K., Pang D.-W., Yan X. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat. Commun. 2023;14:160. doi: 10.1038/s41467-023-35828-2. PubMed DOI PMC
Liu C., Fan W.B., Cheng W.X., Gu Y.P., Chen Y.M., Zhou W.H., Yu X.F., Chen M.H., Zhu M.R., Fan K.L., Luo Q.Y. Red emissive carbon dot superoxide dismutase nanozyme for bioimaging and ameliorating acute lung injury. Adv. Funct. Mater. 2023;33 doi: 10.1002/adfm.202213856. DOI
Chong Y., Liu Q., Ge C.C. Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications. Nano Today. 2021;37 doi: 10.1016/j.nantod.2021.101076. DOI
Rosca D.A., Wright J.A., Hughes D.L., Bochmann M. Gold peroxide complexes and the conversion of hydroperoxides into gold hydrides by successive oxygen-transfer reactions. Nat. Commun. 2013;4:2167. doi: 10.1038/ncomms3167. PubMed DOI
Stasyuk N., Gayda G., Kavetskyy T., Gonchar M. Nanozymes with reductase-like activities: antioxidant properties and electrochemical behavior. RSC Adv. 2022;12:2026–2035. doi: 10.1039/d1ra08127f. PubMed DOI PMC
Singh P., Roy S., Jaiswal A. Cubic gold nanorattles with a solid octahedral core and porous shell as efficient catalyst: immobilization and kinetic analysis. J. Phys. Chem. C. 2017;121:22914–22925. doi: 10.1021/acs.jpcc.7b07748. DOI
Zhao P.X., Feng X.W., Huang D.S., Yang G.Y., Astruc D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord. Chem. Rev. 2015;287:114–136. doi: 10.1016/j.ccr.2015.01.002. DOI
Ruiz-Gutierrez N., Rieu M., Ouellet J., Allemand J.F., Croquette V., Le Hir H. Methods in Enzymology. Academic Press; 2022. Chapter Thirteen - novel approaches to study helicases using magnetic tweezers; pp. 359–403. PubMed
Borghei Y.S., Hosseini M., Ganjali M.R. Oxidase-like Catalytic activity of Cys-AuNCs upon visible light irradiation and its application for visual miRNA detection. Sensor. Actuator. B Chem. 2018;273:1618–1626. doi: 10.1016/j.snb.2018.07.061. DOI
Cabugao K.G., Timm C.M., Carrell A.A., Childs J., Lu T.Y.S., Pelletier D.A., Weston D.J., Norby R.J. Root and rhizosphere bacterial phosphatase activity varies with tree species and soil phosphorus availability in Puerto Rico tropical forest. Front. Plant Sci. 2017;8:1834. doi: 10.3389/fpls.2017.01834. PubMed DOI PMC
Lyu Y., Morillas-Becerril L., Mancin F., Scrimin P. Hydrolytic cleavage of nerve agent simulants by gold nanozymes. J. Hazard Mater. 2021;415 doi: 10.1016/j.jhazmat.2021.125644. PubMed DOI
Chen J.L.Y., Pezzato C., Scrimin P., Prins L.J. Chiral nanozymes-gold nanoparticle-based transphosphorylation catalysts capable of enantiomeric discrimination. Chem. Eur J. 2016;22:7028–7032. doi: 10.1002/chem.201600853. PubMed DOI
Wei H., Gao L.Z., Fan K.L., Liu J.W., He J.Y., Qu X.G., Dong S.J., Wang E.K., Yan X.Y., Nanozymes A clear definition with fuzzy edges. Nano Today. 2021;40 doi: 10.1016/j.nantod.2021.101269. DOI
Tao Y., Lin Y.H., Huang Z.Z., Ren J.S., Qu X.G. Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013;25:2594–2599. doi: 10.1002/adma.201204419. PubMed DOI
Dashtestani F., Ghourchian H., Najafi A. Silver-gold-apoferritin nanozyme for suppressing oxidative stress during cryopreservation. Mater. Sci. Eng. C. 2019;94:831–840. doi: 10.1016/j.msec.2018.10.008. PubMed DOI
Sun H.L., Zhang J.B., Wang M.J., Su X.G. Ratiometric fluorometric and colorimetric dual-mode sensing of glucose based on gold-platinum bimetallic nanoclusters. Microchem. J. 2022;179 doi: 10.1016/j.microc.2022.107574. DOI
Liu C.P., Wu T.H., Liu C.Y., Chen K.C., Chen Y.X., Chen G.S., Lin S.Y. Self-supplying O-2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small. 2017;13 doi: 10.1002/smll.201700278. PubMed DOI
Ma M.Z., Cao J.J., Fang A.S., Xu Z.H., Zhang T.Y., Shi F. Detection and difference analysis of the enzyme activity of colloidal gold nanoparticles with negatively charged surfaces prepared by different reducing agents. Front. Chem. 2022;9 doi: 10.3389/fchem.2021.812083. PubMed DOI PMC
Swaminathan R., Devi M.C., Rajendran L., Venugopal K. Sensitivity and resistance of amperometric biosensors in substrate inhibition processes. J. Electroanal. Chem. 2021;895 doi: 10.1016/j.jelechem.2021.115527. DOI
Huyke D.A., Ramachandran A., Bashkirov V.I., Kotseroglou E.K., Kotseroglou T., Santiago J.G. Enzyme kinetics and detector sensitivity determine limits of detection of amplification-free CRISPR-cas12 and CRISPR-cas13 diagnostics. Anal. Chem. 2022;94:9826–9834. doi: 10.1021/acs.analchem.2c01670. PubMed DOI
Radenkovic S., Antic M., Savic N.D., Glisic B.D. The nature of the Au-N bond in gold(III) complexes with aromatic nitrogen-containing heterocycles: the influence of Au(III) ions on the ligand aromaticity. New J. Chem. 2017;41:12407–12415. doi: 10.1039/c7nj02634j. DOI
Weerathunge P., Ramanathan R., Torok V.A., Hodgson K., Xu Y., Goodacre R., Behera B.K., Bansal V. Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor. Anal. Chem. 2019;91:3270–3276. doi: 10.1021/acs.analchem.8b03300. PubMed DOI
Zhang W., Wang C., Guan L.H., Peng M.H., Li K., Lin Y.Q. A non-enzymatic electrochemical biosensor based on Au@PBA(Ni-Fe):MoS2 nanocubes for stable and sensitive detection of hydrogen peroxide released from living cells. J. Mat. Chem. B. 2019;7:7704–7712. doi: 10.1039/c9tb02059d. PubMed DOI
Zhao L., Niu G.M., Gao F.C., Lu K.D., Sun Z.W., Li H., Stenzel M., Liu C., Jiang Y.Y. Gold nanorods (AuNRs) and zeolitic imidazolate framework-8 (ZIF-8) core-shell nanostructure-based electrochemical sensor for detecting neurotransmitters. ACS Omega. 2021;6:33149–33158. doi: 10.1021/acsomega.1c05529. PubMed DOI PMC
Wang S., Chen W., Liu A.L., Hong L., Deng H.H., Lin X.H. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem. 2012;13:1199–1204. doi: 10.1002/cphc.201100906. PubMed DOI
Ray S., Biswas R., Banerjee R., Biswas P. A gold nanoparticle-intercalated mesoporous silica-based nanozyme for the selective colorimetric detection of dopamine. Nanoscale Adv. 2020;2:734–745. doi: 10.1039/c9na00508k. PubMed DOI PMC
Zhang J.J., Huang Z.T., Xie Y.Z.Y., Jiang X.Y. Modulating the catalytic activity of gold nanoparticles using amine-terminated ligands. Chem. Sci. 2022;13:1080–1087. doi: 10.1039/d1sc05933e. PubMed DOI PMC
Liu C.P., Chen K.C., Su C.F., Yu P.Y., Lee P.W. Revealing the active site of gold nanoparticles for the peroxidase-like activity: the determination of surface accessibility. Catalysts. 2019;9:517. doi: 10.3390/catal9060517. DOI
Liu Y., Chen Z., Shao Z.F., Guo R. Single gold nanoparticle-driven heme cofactor nanozyme as an unprecedented oxidase mimetic. Chem. Commun. 2021;57:3399–3402. doi: 10.1039/d1cc00279a. PubMed DOI
Liu L., Jiang H., Wang X.M. Bivalent metal ions tethered fluorescent gold nanoparticles as a reusable peroxidase mimic nanozyme. J. Anal. Test. 2019;3:269–276. doi: 10.1007/s41664-019-00109-9. DOI
Liu L., Jiang H., Wang X.M. Alkaline phosphatase-responsive Zn2+ double-triggered nucleotide capped gold nanoclusters/alginate hydrogel with recyclable nanozyme capability. Biosens. Bioelectron. 2021;173 doi: 10.1016/j.bios.2020.112786. PubMed DOI
Tao X.Q., Wang X., Liu B.W., Liu J.W. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens. Bioelectron. 2020;168 doi: 10.1016/j.bios.2020.112537. PubMed DOI
Meng F.Y., Xu Y.Y., Dong W.F., Tang Y.G., Miao P. A PCR-free voltammetric telomerase activity assay using a substrate primer on a gold electrode and DNA-triggered capture of gold nanoparticles. Microchim. Acta. 2018;185:398. doi: 10.1007/s00604-018-2936-x. PubMed DOI
Weerathunge P., Ramanathan R., Shukla R., Sharma T.K., Bansal V. Aptamer-Controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal. Chem. 2014;86:11937–11941. doi: 10.1021/ac5028726. PubMed DOI
Zheng X.X., Liu Q., Jing C., Li Y., Li D., Luo W.J., Wen Y.Q., He Y., Huang Q., Long Y.T., Fan C.H. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew. Chem., Int. Ed. 2011;50:11994–11998. doi: 10.1002/anie.201105121. PubMed DOI
Zhou P.P., Jia S.S., Pan D., Wang L.H., Gao J.M., Lu J.X., Shi J.Y., Tang Z.S., Liu H.J. Reversible regulation of catalytic activity of gold nanoparticles with DNA nanomachines. Sci. Rep. 2015;5 doi: 10.1038/srep14402. PubMed DOI PMC
Lien C.W., Chen Y.C., Chang H.T., Huang C.C. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale. 2013;5:8227–8234. doi: 10.1039/c3nr01836a. PubMed DOI
Rashid J.I.A., Yusof N.A., Abdullah J., Hashim U., Hajian R. Surface modifications to boost sensitivities of electrochemical biosensors using gold nanoparticles/silicon nanowires and response surface methodology approach. J. Mater. Sci. 2016;51:1083–1097. doi: 10.1007/s10853-015-9438-6. DOI
Tonga G.Y., Jeong Y.D., Duncan B., Mizuhara T., Mout R., Das R., Kim S.T., Yeh Y.C., Yan B., Hou S., Rotello V.M. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 2015;7:597–603. doi: 10.1038/nchem.2284. PubMed DOI PMC
Fedeli S., Im J., Gopalakrishnan S., Elia J.L., Gupta A., Kim D., Rotello V.M. Nanomaterial-based bioorthogonal nanozymes for biological applications. Chem. Soc. Rev. 2021;50:13467–13480. doi: 10.1039/d0cs00659a. PubMed DOI PMC
Niu X.H., Cheng N., Ruan X.F., Du D., Lin Y.H. Review-nanozyme-based immunosensors and immunoassays: recent developments and future trends. J. Electrochem. Soc. 2019;167 doi: 10.1149/2.0082003jes. DOI
Ahmed S.R., Corredor J.C., Nagy É., Neethirajan S. Amplified visual immunosensor integrated with nanozyme for ultrasensitive detection of avian influenza virus. Nanotheranostics. 2017;1:338–345. doi: 10.7150/ntno.20758. PubMed DOI PMC
Lian W.J., Liu S., Yu J.H., Xing X.R., Li J., Cui M., Huang J.D. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens. Bioelectron. 2012;38:163–169. doi: 10.1016/j.bios.2012.05.017. PubMed DOI
Fan L., Tian Y.S., Lou D.D., Wu H.A., Cui Y., Gu N., Zhang Y. Catalytic gold-platinum alloy nanoparticles and a novel glucose oxidase mimic with enhanced activity and selectivity constructed by molecular imprinting. Anal. Methods. 2019;11:4586–4592. doi: 10.1039/c9ay01308c. DOI
He J.B., Zhang L., Xu L.H., Kong F.F., Xu Z.X. Development of nanozyme-labeled biomimetic immunoassay for determination of sulfadiazine residue in foods. Adv. Polym. Technol. 2020;2020 doi: 10.1155/2020/7647580. DOI
Abnous K., Danesh N.M., Ramezani M., Taghdisi S.M., Emrani A.S. A novel colorimetric aptasensor for ultrasensitive detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles. Anal. Chim. Acta. 2018;1020:110–115. doi: 10.1016/j.aca.2018.02.066. PubMed DOI
Liu Z.D., Zhu H.Y., Zhao H.X., Huang C.Z. Highly selective colorimetric detection of spermine in biosamples on basis of the non-crosslinking aggregation of ssDNA-capped gold nanoparticles. Talanta. 2013;106:255–260. doi: 10.1016/j.talanta.2012.10.079. PubMed DOI
Ma Q., Qiao J., Liu Y.F., Qi L. Colorimetric monitoring of serum dopamine with promotion activity of gold nanocluster-based nanozymes. Analyst. 2021;146:6615–6620. doi: 10.1039/d1an01511g. PubMed DOI
Wang Z., Zhao Y., Hou Y., Tang G., Zhang R., Yang Y., Yan X., Fan K. A thrombin-activated peptide-templated nanozyme for remedying ischemic stroke via thrombolytic and neuroprotective actions. Adv. Mater. 2023;35 doi: 10.1002/adma.202210144. PubMed DOI
Chen J.X., Wu W.W., Huang L., Ma Q., Dong S.J. Self-indicative gold nanozyme for H2O2 and glucose sensing. Chem. Eur J. 2019;25:11940–11944. doi: 10.1002/chem.201902288. PubMed DOI
Zandieh M., Liu J.W. Nanozyme catalytic turnover and self-limited reactions. ACS Nano. 2021;15:15645–15655. doi: 10.1021/acsnano.1c07520. PubMed DOI
Ouyang Y., Fadeev M., Zhang P., Carmieli R., Li J., Sohn Y.S., Karmi O., Nechushtai R., Pikarsky E., Fan C.H., Willner I. Aptamer-modified Au nanoparticles: functional nanozyme bioreactors for cascaded catalysis and catalysts for chemodynamic treatment of cancer cells. ACS Nano. 2022;16:18232–18243. doi: 10.1021/acsnano.2c05710. PubMed DOI PMC
Barnoy E.A., Motiei M., Tzror C., Rahimipour S., Popovtzer R., Fixler D. Biological logic gate using gold nanoparticles and fluorescence lifetime imaging microscopy. ACS Appl. Nano Mater. 2019;2:6527–6536. doi: 10.1021/acsanm.9b01457. DOI
Lai Y.H., Sun S.C., Chuang M.C. Biosensors with built-in biomolecular logic gates for practical applications. Biosensors. 2014;4:273–300. doi: 10.3390/bios4030273. PubMed DOI PMC
Liu H.L., Li Y.H., Sun S., Xin Q., Liu S.H., Mu X.Y., Yuan X., Chen K., Wang H., Varga K., Mi W.B., Yang J., Zhang X.D. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat. Commun. 2021;12:114. doi: 10.1038/s41467-020-20275-0. PubMed DOI PMC
Lin X.D., Liu Y.Q., Tao Z.H., Gao J.T., Deng J.K., Yin J.J., Wang S. Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosens. Bioelectron. 2017;94:471–477. doi: 10.1016/j.bios.2017.01.008. PubMed DOI
Lin J.S., Wang Q., Wang X.Y., Zhu Y.Y., Zhou X., Wei H. Gold alloy-based nanozyme sensor arrays for biothiol detection. Analyst. 2020;145 doi: 10.1039/D0AN00451K. (vol 53, pg 964, 2020) 4050-4050. PubMed DOI
Loynachan C.N., Soleimany A.P., Dudani J.S., Lin Y.Y., Najer A., Bekdemir A., Chen Q., Bhatia S.N., Stevens M.M. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 2019;14:883–890. doi: 10.1038/s41565-019-0527-6. PubMed DOI PMC
Hu W.C., Younis M.R., Zhou Y., Wang C., Xia X.H. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small. 2020;16 doi: 10.1002/smll.202000553. PubMed DOI
Smutok O., Kavetskyy T., Prokopiv T., Serkiz R., Wojnarowska-Nowak R., Sausa O., Novak I., Berek D., Melman A., Gonchar M. New micro/nanocomposite with peroxidase-like activity in construction of oxidases-based amperometric biosensors for ethanol and glucose analysis. Anal. Chim. Acta. 2021;1143:201–209. doi: 10.1016/j.aca.2020.11.052. PubMed DOI
Zhang L.Y., Fan C., Liu M., Liu F.J., Bian S.S., Du S.Y., Zhu S.Y., Wang H. Biominerized gold-Hemin@MOF composites with peroxidase-like and gold catalysis activities: a high-throughput colorimetric immunoassay for alpha-fetoprotein in blood by ELISA and gold-catalytic silver staining. Sensor. Actuator. B Chem. 2018;266:543–552. doi: 10.1016/j.snb.2018.03.153. DOI
Huang W., Xu Y., Wang Z.P., Liao K., Zhang Y., Sun Y.M. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells. Talanta. 2022;249 doi: 10.1016/j.talanta.2022.123612. PubMed DOI
Long L., Cai R., Liu J.B., Wu X.C. A novel nanoprobe based on core-shell Au@Pt@mesoporous SiO(2)Nanozyme with enhanced activity and stability for mumps virus diagnosis. Front. Chem. 2020;8:463. doi: 10.3389/fchem.2020.00463. PubMed DOI PMC
Tao Y., Ju E.G., Ren J.S., Qu X.G. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015;27:1097–1104. doi: 10.1002/adma.201405105. PubMed DOI
Ji X.Y., Lu Q., Sun X.H., Zhao L.Y., Zhang Y.H., Yao J.S., Zhang X., Zhao H. Dual-active Au@PNIPAm nanozymes for glucose detection and intracellular H2O2 modulation. Langmuir. 2022:8077–8086. doi: 10.1021/acs.langmuir.2c00911. PubMed DOI
Nirala N.R., Prakash R., Vinita One step synthesis of AuNPs@MoS2-QDs composite as a robust peroxidase- mimetic for instant unaided eye detection of glucose inserum, saliva and tear. Sensor. Actuator. B Chem. 2018;263:109–119. doi: 10.1016/j.snb.2018.02.085. DOI
Zhu X.L., Mao X.X., Wang Z.H., Feng C., Chen G.F., Li G.X. Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res. 2017;10:959–970. doi: 10.1007/s12274-016-1354-9. DOI
Czescik J., Zamolo S., Darbre T., Rigo R., Sissi C., Pecina A., Riccardi L., De Vivo M., Mancin F., Scrimin P. A gold nanoparticle nanonuclease relying on a Zn(II) mononuclear complex. Angew. Chem. Int. Ed. 2021;60:1423–1432. doi: 10.1002/anie.202012513. PubMed DOI PMC
Mao M.X., Zheng R., Peng C.F., Wei X.L. DNA-gold nanozyme-modified paper device for enhanced colorimetric detection of mercury ions. Biosensors. 2020;10:211. doi: 10.3390/bios10120211. PubMed DOI PMC
Jin G.H., Ko E., Kim M.K., Tran V.K., Son S.E., Geng Y., Hur W., Seong G.H. Graphene oxide-gold nanozyme for highly sensitive electrochemical detection of hydrogen peroxide. Sensor. Actuator. B Chem. 2018;274:201–209. doi: 10.1016/j.snb.2018.07.160. DOI
Sun S.M., Zhao R., Feng S.M., Xie Y.L. Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity. Microchim. Acta. 2018;185:535. doi: 10.1007/s00604-018-3078-x. PubMed DOI
Ouyang H.X., Ling S.M., Liang A.H., Jiang Z.L. A facile aptamer-regulating gold nanoplasmonic SERS detection strategy for trace lead ions. Sensor. Actuator. B Chem. 2018;258:739–744. doi: 10.1016/j.snb.2017.12.009. DOI
Das R., Dhiman A., Kapil A., Bansal V., Sharma T.K. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem. 2019;411:1229–1238. doi: 10.1007/s00216-018-1555-z. PubMed DOI
Wang C.S., Liu C., Luo J.B., Tian Y.P., Zhou N.D. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta. 2016;936:75–82. doi: 10.1016/j.aca.2016.07.013. PubMed DOI
Shah M.M., Ren W., Irudayaraj J., Sajini A.A., Ali M.I., Ahmad B. Colorimetric detection of organophosphate pesticides based on acetylcholinesterase and cysteamine capped gold nanoparticles as nanozyme. Sensors. 2021;21:8050. doi: 10.3390/s21238050. PubMed DOI PMC
Bhagat S., Vallabani N.V.S., Shutthanandan V., Bowden M., Karakoti A.S., Singh S. Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J. Colloid Interface Sci. 2018;513:831–842. doi: 10.1016/j.jcis.2017.11.064. PubMed DOI
Zhang Z.J., Zhang X.H., Liu B.W., Liu J.W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017;139:5412–5419. doi: 10.1021/jacs.7b00601. PubMed DOI
Liu M., Zhao H.M., Chen S., Yu H.T., Quan X. Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano. 2012;6:3142–3151. doi: 10.1021/nn3010922. PubMed DOI
Kumar S., Bhushan P., Bhattacharya S. Facile synthesis of Au@Ag-hemin decorated reduced graphene oxide sheets: a novel peroxidase mimetic for ultrasensitive colorimetric detection of hydrogen peroxide and glucose. RSC Adv. 2017;7:37568–37577. doi: 10.1039/c7ra06973a. DOI
Wu L., Yin W.M., Tan X.C., Wang P., Ding F., Zhang H., Wang B.R., Zhang W.Y., Han H.Y. Direct reduction of HAuCl4 for the visual detection of intracellular hydrogen peroxide based on Au-Pt/SiO2 nanospheres. Sensor. Actuator. B Chem. 2017;248:367–373. doi: 10.1016/j.snb.2017.03.166. DOI
Hu Y.H., Cheng H.J., Zhao X.Z., Wu J.J., Muhammad F., Lin S.C., He J., Zhou L.Q., Zhang C.P., Deng Y., Wang P., Zhou Z.Y., Nie S.M., Wei H. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano. 2017;11:5558–5566. doi: 10.1021/acsnano.7b00905. PubMed DOI
Liu Y., Ding D., Zhen Y.L., Guo R. Amino acid-mediated 'turn-off/turn-on' nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens. Bioelectron. 2017;92:140–146. doi: 10.1016/j.bios.2017.01.036. PubMed DOI
Chang Y.Q., Zhang Z., Hao J.H., Yang W.S., Tang J.L. BSA-stabilized Au clusters as peroxidase mimetic for colorimetric detection of Ag+ Sensor. Actuator. B Chem. 2016;232:692–697. doi: 10.1016/j.snb.2016.04.039. DOI
Liu Y.L., Fu W.L., Li C.M., Huang C.Z., Li Y.F. Gold nanoparticles immobilized on metal-organic frameworks with enhanced catalytic performance for DNA detection. Anal. Chim. Acta. 2015;861:55–61. doi: 10.1016/j.aca.2014.12.032. PubMed DOI
Hizir M.S., Top M., Balcioglu M., Rana M., Robertson N.M., Shen F.S., Sheng J., Yigit M.V. Multiplexed activity of perAuxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal. Chem. 2016;88:600–605. doi: 10.1021/acs.analchem.5b03926. PubMed DOI
Yang J.E., Lu Y.X., Ao L., Wang F.Y., Jing W.J., Zhang S.C., Liu Y.Y. Colorimetric sensor array for proteins discrimination based on the tunable peroxidase-like activity of AuNPs-DNA conjugates. Sensor. Actuator. B Chem. 2017;245:66–73. doi: 10.1016/j.snb.2017.01.119. DOI
Hu J.T., Ni P.J., Dai H.C., Sun Y.J., Wang Y.L., Jiang S., Li Z. Aptamer-based colorimetric biosensing of abrin using catalytic gold nanoparticles. Analyst. 2015;140:3581–3586. doi: 10.1039/c5an00107b. PubMed DOI
Tian J.P. Aptamer-based colorimetric detection of various targets based on catalytic Au NPs/Graphene nanohybrids. Sens. BioSens. Res. 2019;22 doi: 10.1016/j.sbsr.2019.100258. DOI
Gao L., Liu M.Q., Ma G.F., Wang Y.L., Zhao L.N., Yuan Q., Gao F.P., Liu R., Zhai J., Chai Z.F., Zhao Y.L., Gao X.Y. Peptide-conjugated gold nanoprobe: intrinsic nanozyme-linked immunsorbant assay of integrin expression level on cell membrane. ACS Nano. 2015;9:10979–10990. doi: 10.1021/acsnano.5b04261. PubMed DOI
Masud M.K., Yadav S., Isam M.N., Nguyen N.T., Salomon C., Kline R., Alamri H.R., Alothman Z.A., Yamauchi Y., Hossain M.S.A., Shiddiky M.J.A. Gold-loaded nanoporous ferric oxide nanocubes with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of autoantibody. Anal. Chem. 2017;89:11005–11013. doi: 10.1021/acs.analchem.7b02880. PubMed DOI
Hu L.Z., Liao H., Feng L.Y., Wang M., Fu W.S. Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Anal. Chem. 2018;90:6247–6252. doi: 10.1021/acs.analchem.8b00885. PubMed DOI
Liu J., Zhang W., Zhang H.L., Yang Z.Y., Li T.R., Wang B.D., Huo X., Wang R., Chen H.T. A multifunctional nanoprobe based on Au-Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem. Commun. 2013;49:4938–4940. doi: 10.1039/c3cc41984c. PubMed DOI
Maji S.K., Mandal A.K., Nguyen K.T., Borah P., Zhao Y.L. Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl. Mater. Interfaces. 2015;7:9807–9816. doi: 10.1021/acsami.5b01758. PubMed DOI
Tao Y., Li M.Q., Kim B., Auguste D.T. Incorporating gold nanoclusters and target-directed liposomes as a synergistic amplified colorimetric sensor for HER2-positive breast cancer cell detection. Theranostics. 2017;7:899–911. doi: 10.7150/thno.17927. PubMed DOI PMC
Khoris I.M., Takemura K., Lee J., Hara T., Abe F., Suzuki T., Park E.Y. Enhanced colorimetric detection of norovirus using in-situ growth of Ag shell on Au NPs. Biosens. Bioelectron. 2019;126:425–432. doi: 10.1016/j.bios.2018.10.067. PubMed DOI
Zhao C., Hong C.Y., Lin Z.Z., Chen X.M., Huang Z.Y. Detection of Malachite Green using a colorimetric aptasensor based on the inhibition of the peroxidase-like activity of gold nanoparticles by cetyltrimethylammonium ions. Microchim. Acta. 2019;186:322. doi: 10.1007/s00604-019-3436-3. PubMed DOI
Mcvey C., Logan N., Thanh N.T.K., Elliott C., Cao C. Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 2019;12:509–516. doi: 10.1007/s12274-018-2241-3. DOI