Enhancing the production of chlorophyll f in the cyanobacterium Synechocystis sp. PCC 6803
Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
854126
European Research Council - International
BB/V002007/1
Biotechnology and Biological Sciences Research Council - United Kingdom
OPJAKCZ.02.01.01/00/22_008/0004624
Czech Ministry of Education, Youth and Sports
PubMed
40139952
PubMed Central
PMC11946780
DOI
10.1111/ppl.70169
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny metabolismus genetika MeSH
- chlorofyl * analogy a deriváty metabolismus biosyntéza MeSH
- fotosyntéza MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- světlo MeSH
- Synechocystis * metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- chlorofyl * MeSH
- chlorophyll f MeSH Prohlížeč
- fotosystém II (proteinový komplex) MeSH
One potential approach to improve the productivity of cyanobacteria and microalgae is to enhance photosynthetic efficiency by introducing far-red absorbing pigment molecules (such as chlorophylls f and d) into the photosynthetic apparatus to expand the range of photosynthetically active radiation. We have shown previously that expressing the ChlF subunit of Chroococcidiopsis thermalis PCC 7203 in the model cyanobacterium Synechocystis sp. PCC 6803 (Syn6803) is sufficient to drive the production of chlorophyll f (Chl f), but only to low levels (0.24% Chl f/Chl a). By using the strong Pcpc560 promoter and an N-terminal truncated derivative of ChlF, we have been able to increase the yield of Chl f in white light by over 30-fold to about 8.2% Chl f/Chl a, close to the level displayed by far-red photoacclimated C. thermalis 7203. Additionally, we demonstrate that ChlF from Fisherella thermalis PCC 7521, like ChlF from C. thermalis 7203, assembles into a variant of the monomeric photosystem II (PSII) core complex termed the super-rogue PSII complex when expressed in Syn6803. This contrasts with the originally reported formation of a ChlF homodimeric complex in Synechococcus sp. PCC 7002. Overall, our work is an important starting point for mechanistic and structural studies of super-rogue PSII and for incorporating Chl f into the photosynthetic apparatus of Syn6803.
Zobrazit více v PubMed
Blankenship, R.E. , Chen, M. , 2013. Spectral expansion and antenna reduction can enhance photosynthesis for energy production. Curr. Opin. Chem. Biol. 17, 457–461. 10.1016/j.cbpa.2013.03.031 PubMed DOI
Bühler, K. , Lindberg, P. (Eds.), 2023. Cyanobacteria in Biotechnology: Applications and Quantitative Perspectives, Advances in Biochemical Engineering/Biotechnology. Springer International Publishing, Cham. 10.1007/978-3-031-33274-6 DOI
Cardona, T. , Murray, J.W. , Rutherford, A.W. , 2015. Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria. Mol. Biol. Evol. 32, 1310–1328. 10.1093/molbev/msv024 PubMed DOI PMC
Cardona, T. , Shao, S. , Nixon, P.J. , 2018. Enhancing photosynthesis in plants: the light reactions. Essays Biochem. 62, 85–94. 10.1042/EBC20170015 PubMed DOI PMC
Chen, M. , Blankenship, R.E. , 2011. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 16, 427–431. 10.1016/j.tplants.2011.03.011 PubMed DOI
Chen, M. , Schliep, M. , Willows, R.D. , Cai, Z.‐L. , Neilan, B.A. , Scheer, H. , 2010. A Red‐Shifted Chlorophyll. Science 329, 1318–1319. 10.1126/science.1191127 PubMed DOI
Debus, R.J. , Campbell, K.A. , Gregor, W. , Li, Z.‐L. , Burnap, R.L. , Britt, R.D. , 2001. Does Histidine 332 of the D1 Polypeptide Ligate the Manganese Cluster in Photosystem II? An Electron Spin Echo Envelope Modulation Study. Biochemistry 40, 3690–3699. 10.1021/bi002394c PubMed DOI
Dobáková, M. , Sobotka, R. , Tichý, M. , Komenda, J. 2008. Psb28 Protein Is Involved in the Biogenesis of the Photosystem II Inner Antenna CP47 (PsbB) in the Cyanobacterium Synechocystis sp. PCC 6803. Plant Physiology 149(2), 1076–1086. 10.1104/pp.108.130039 PubMed DOI PMC
Fabris, M. , Abbriano, R.M. , Pernice, M. , Sutherland, D.L. , Commault, A.S. , Hall, C.C. , Labeeuw, L. , McCauley, J.I. , Kuzhiuparambil, U. , Ray, P. , Kahlke, T. , Ralph, P.J. , 2020. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae‐Based Bioeconomy. Front. Plant Sci. 11. PubMed PMC
Gan, F. , Shen, G. , Bryant, D.A. , 2014a. Occurrence of Far‐Red Light Photoacclimation (FaRLiP) in Diverse Cyanobacteria. Life Basel Switz. 5, 4–24. 10.3390/life5010004 PubMed DOI PMC
Gan, F. , Zhang, S. , Rockwell, N.C. , Martin, S.S. , Lagarias, J.C. , Bryant, D.A. , 2014b. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far‐red light. Science 345, 1312. 10.1126/science.1256963 PubMed DOI
Gisriel, C.J. , Shen, G. , Flesher, D.A. , Kurashov, V. , Golbeck, J.H. , Brudvig, G.W. , Amin, M. , Bryant, D.A. , 2023. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far‐red light. J. Biol. Chem. 299. 10.1016/j.jbc.2022.102815 PubMed DOI PMC
Gisriel, C.J. , Shen, G. , Ho, M.‐Y. , Kurashov, V. , Flesher, D.A. , Wang, J. , Armstrong, W.H. , Golbeck, J.H. , Gunner, M.R. , Vinyard, D.J. , Debus, R.J. , Brudvig, G.W. , Bryant, D.A. , 2022. Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far‐red light reveals the functions of chlorophylls d and f. J. Biol. Chem. 298. 10.1016/j.jbc.2021.101424 PubMed DOI PMC
Ho, M.‐Y. , Shen, G. , Canniffe, D.P. , Zhao, C. , Bryant, D.A. , 2016. Light‐dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science 353, aaf9178. 10.1126/science.aaf9178 PubMed DOI
Hu, Z. , Fan, Z. , Zhao, Z. , Chen, J. , Li, J. , 2012. Stable Expression of Antibiotic‐Resistant Gene ble from Streptoalloteichus hindustanus in the Mitochondria of Chlamydomonas reinhardtii. PLOS ONE 7, e35542. 10.1371/journal.pone.0035542 PubMed DOI PMC
Kruse, O. , Rupprecht, J. , Mussgnug, J.H. , Dismukes, G.C. , Hankamer, B. , 2005. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem. Photobiol. Sci. 4, 957–970. 10.1039/b506923h PubMed DOI
Lazarus, J.E. , Warr, A.R. , Kuehl, C.J. , Giorgio, R.T. , Davis, B.M. , Waldor, M.K. , 2019. A New Suite of Allelic‐Exchange Vectors for the Scarless Modification of Proteobacterial Genomes. Appl. Environ. Microbiol. 85, e00990‐19. 10.1128/AEM.00990-19 PubMed DOI PMC
Li, Y. , Scales, N. , Blankenship, R.E. , Willows, R.D. , Chen, M. , 2012. Extinction coefficient for red‐shifted chlorophylls: Chlorophyll d and chlorophyll f. Biochim. Biophys. Acta BBA ‐ Bioenerg., Photosynthesis Research for Sustainability: From Natural to Artificial 1817, 1292–1298. 10.1016/j.bbabio.2012.02.026 PubMed DOI
Li, Z. , Li, S. , Chen, L. , Sun, T. , Zhang, W. , 2023. Fast‐growing cyanobacterial chassis for synthetic biology application. Crit. Rev. Biotechnol. 0, 1–15. 10.1080/07388551.2023.2166455 PubMed DOI
Lucker, B. , Schwarz, E. , Kuhlgert, S. , Ostendorf, E. , Kramer, D.M. , 2017. Spectroanalysis in native gels (SING): rapid spectral analysis of pigmented thylakoid membrane complexes separated by CN–PAGE. Plant J. 92, 744–756. 10.1111/tpj.13703 PubMed DOI
Mascoli, V. , Bhatti, A.F. , Bersanini, L. , van Amerongen, H. , Croce, R. , 2022. The antenna of far‐red absorbing cyanobacteria increases both absorption and quantum efficiency of Photosystem II. Nat. Commun. 13, 3562. 10.1038/s41467-022-31099-5 PubMed DOI PMC
Michoux, F. , Boehm, M. , Bialek, W. , Takasaka, K. , Maghlaoui, K. , Barber, J. , Murray, J.W ., Nixon, P.J. 2014. Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes. Photosynthesis Research, 122(1), 57–67. 10.1007/s11120-014-0010-z PubMed DOI PMC
Miyashita, H. , Ikemoto, H. , Kurano, N. , Adachi, K. , Chihara, M. , Miyachi, S. , 1996. Chlorophyll d as a major pigment. Nature 383, 402–402. 10.1038/383402a0 DOI
Murray, J.W. , 2012. Sequence variation at the oxygen‐evolving centre of photosystem II: a new class of ‘rogue’ cyanobacterial D1 proteins. Photosynth. Res. 110, 177–184. 10.1007/s11120-011-9714-5 PubMed DOI
Naduthodi, M.I.S. , Claassens, N.J. , D'Adamo, S. , van der Oost, J. , Barbosa, M.J. , 2021. Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol. 39, 1019–1036. 10.1016/j.tibtech.2020.12.010 PubMed DOI
Ort, D.R. , Merchant, S.S. , Alric, J. , Barkan, A. , Blankenship, R.E. , Bock, R. , Croce, R. , Hanson, M.R. , Hibberd, J.M. , Long, S.P. , Moore, T.A. , Moroney, J. , Niyogi, K.K. , Parry, M.A.J. , Peralta‐Yahya, P.P. , Prince, R.C. , Redding, K.E. , Spalding, M.H. , van Wijk, K.J. , Vermaas, W.F.J. , von Caemmerer, S. , Weber, A.P.M. , Yeates, T.O. , Yuan, J.S. , Zhu, X.G. , 2015. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. 112, 8529–8536. 10.1073/pnas.1424031112 PubMed DOI PMC
Ritchie, R.J. , 2006. Consistent Sets of Spectrophotometric Chlorophyll Equations for Acetone, Methanol and Ethanol Solvents. Photosynth. Res. 89, 27–41. 10.1007/s11120-006-9065-9 PubMed DOI
Shen, G. , Canniffe, D.P. , Ho, M.‐Y. , Kurashov, V. , van der Est, A. , Golbeck, J.H. , Bryant, D.A. , 2019. Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Photosynth. Res. 140, 77–92. 10.1007/s11120-018-00610-9 PubMed DOI
Taylor, G.M. , Hitchcock, A. , Heap, J.T. , 2021. Combinatorial assembly platform enabling engineering of genetically stable metabolic pathways in cyanobacteria. Nucleic Acids Res. 49, e123. 10.1093/nar/gkab791 PubMed DOI PMC
Taylor, G.M. , Mordaka, P.M. , Heap, J.T. , 2019. Start‐Stop Assembly: a functionally scarless DNA assembly system optimized for metabolic engineering. Nucleic Acids Res. 47, e17. 10.1093/nar/gky1182 PubMed DOI PMC
Tichý, M. , Bečková, M. , Kopečná, J. , Noda, J. , Sobotka, R. , Komenda, J. , 2016. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem II Contains Tandem Duplication of a Large Chromosomal Region. Front. Plant Sci. 7. PubMed PMC
Trinugroho, J.P. , 2020. Isolation and characterisation of the cyanobacterial chlorophyll f synthase. 10.25560/97264 DOI
Trinugroho, J.P. , Bečková, M. , Shao, S. , Yu, J. , Zhao, Z. , Murray, J.W. , Sobotka, R. , Komenda, J. , Nixon, P.J. , 2020. Chlorophyll f synthesis by a super‐rogue photosystem II complex. Nat. Plants 6, 238–244. 10.1038/s41477-020-0616-4 PubMed DOI
Tros, M. , Mascoli, V. , Shen, G. , Ho, M.‐Y. , Bersanini, L. , Gisriel, C.J. , Bryant, D.A. , Croce, R. , 2021. Breaking the Red Limit: Efficient Trapping of Long‐Wavelength Excitations in Chlorophyll‐f‐Containing Photosystem I. Chem 7, 155–173. 10.1016/j.chempr.2020.10.024 DOI
Zhao, Z. , Vercellino, I. , Knoppová, J. , Sobotka, R. , Murray, J.W. , Nixon, P.J. , Sazanov, L.A. , Komenda, J. , 2023. The Ycf48 accessory factor occupies the site of the oxygen‐evolving manganese cluster during photosystem II biogenesis. Nat. Commun. 14, 4681. 10.1038/s41467-023-40388-6 PubMed DOI PMC
Zhou, J. , Zhang, H. , Meng, H. , Zhu, Y. , Bao, G. , Zhang, Y. , Li, Y. , Ma, Y. , 2014. Discovery of a super‐strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci. Rep. 4, 4500. 10.1038/srep04500 PubMed DOI PMC
Zhu, B. , Cai, G. , Hall, E.O. , Freeman, G.J. , 2007. In‐FusionTM assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. BioTechniques 43, 354–359. 10.2144/000112536 PubMed DOI