Mutations Suppressing the Lack of Prepilin Peptidase Provide Insights Into the Maturation of the Major Pilin Protein in Cyanobacteria

. 2021 ; 12 () : 756912. [epub] 20211012

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34712217

Type IV pili are bacterial surface-exposed filaments that are built up by small monomers called pilin proteins. Pilins are synthesized as longer precursors (prepilins), the N-terminal signal peptide of which must be removed by the processing protease PilD. A mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking the PilD protease is not capable of photoautotrophic growth because of the impaired function of Sec translocons. Here, we isolated phototrophic suppressor strains of the original ΔpilD mutant and, by sequencing their genomes, identified secondary mutations in the SigF sigma factor, the γ subunit of RNA polymerase, the signal peptide of major pilin PilA1, and in the pilA1-pilA2 intergenic region. Characterization of suppressor strains suggests that, rather than the total prepilin level in the cell, the presence of non-glycosylated PilA1 prepilin is specifically harmful. We propose that the restricted lateral mobility of the non-glycosylated PilA1 prepilin causes its accumulation in the translocon-rich membrane domains, which attenuates the synthesis of membrane proteins.

Zobrazit více v PubMed

Asayama M., Imamura S. (2008). Stringent promoter recognition and autoregulation by the group 3 sigma-factor SigF in the cyanobacterium Synechocystis sp. strain PCC 6803. Nucleic Acids Res. 36 5297–5305. 10.1093/nar/gkn453 PubMed DOI PMC

Barker M., De Vries R., Nield J., Komenda J., Nixon P. J. (2006). The Deg proteases protect Synechocystis sp PCC 6803 during heat and light stresses but are not essential for removal of damaged D1 protein during the photosystem two repair cycle. J. Biol. Chem. 281 30347–30355. 10.1074/jbc.M601064200 PubMed DOI

Bečková M., Gardian Z., Yu J., Koník P., Nixon P. J., Komenda J. (2017). Association of Psb28 and Psb27 proteins with PSII-PSI supercomplexes upon exposure of Synechocystis sp. PCC 6803 to high light. Mol. Plant 10 62–72. 10.1016/j.molp.2016.08.001 PubMed DOI

Berry J. L., Gurung I., Anonsen J. H., Spielman I., Harper E., Hall A. M. J., et al. (2019). Global biochemical and structural analysis of the type IV pilus from the Gram-positive bacterium Streptococcus sanguinis. J. Biol. Chem. 294 6796–6808. 10.1074/jbc.RA118.006917 PubMed DOI PMC

Bhaya D., Bianco N. R., Bryant D., Grossman A. (2000). Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC 6803. Mol. Microbiol. 37 941–951. 10.1046/j.1365-2958.2000.02068.x PubMed DOI

Bowers K. J., Chow E., Xu H., Dror R. O., Eastwood M. P., Gregersen B. A., et al. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters in International conference for high performance computing, networking, storage and analysis: Machinery. New York, NY.

Bučinská L., Kiss E., Koník P., Knoppová J., Komenda J., Sobotka R. (2018). The ribosome-bound protein Pam68 promotes insertion of Chl into the CP47 subunit of photosystem II. Plant Physiol. 176 2931–2942. 10.1104/pp.18.00061 PubMed DOI PMC

Conradi F. D., Zhou R. Q., Oeser S., Schuergers N., Wilde A., Mullineaux C. W. (2019). Factors controlling floc formation and structure in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 201 e319–e344. 10.1128/jb.00344-19 PubMed DOI PMC

Craig L., Forest K. T., Maier B. (2019). Type IV pili: dynamics, biophysics and functional consequences. Nat. Rev. Microbiol. 17 429–440. 10.1038/s41579-019-0195-4 PubMed DOI

Crane J. M., Randall L. L. (2017). The Sec system: protein export in Escherichia coli. EcoSal. Plus 7:17. 10.1128/ecosalplus.ESP-0002-2017 PubMed DOI PMC

Daskalakis V. (2018). Protein-protein interactions within photosystem II under photoprotection: the synergy between CP29 minor antenna, subunit S (PsbS) and zeaxanthin at all-atom resolution. Phys. Chem. Chem. Phys. 20 11843–11855. 10.1039/c8cp01226a PubMed DOI

Dobáková M., Sobotka R., Tichý M., Komenda J. (2009). Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 149 1076–1086. 10.1104/pp.108.130039 PubMed DOI PMC

Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., et al. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24 1999–2012. 10.1002/jcc.10349 PubMed DOI

Ermakova-Gerdes S., Vermaas W. F. J. (1999). Inactivation of the open reading frame slr0399 in Synechocystis sp. PCC 6803 functionally complements mutations near the Q(A) niche of photosystem II. A possible role of Slr0399 as a chaperone for quinone binding. J. Biol. Chem. 274 30540–30549. 10.1074/jbc.274.43.30540 PubMed DOI

Flores C., Santos M., Pereira S. B., Mota R., Rossi F., De Philippis R., et al. (2019). The alternative sigma factor SigF is a key player in the control of secretion mechanisms in Synechocystis sp. PCC 6803. Environ. Microbiol. 21 343–359. 10.1111/1462-2920.14465 PubMed DOI

Giltner C. L., Nguyen Y., Burrows L. L. (2012). Type IV pilin proteins: versatile molecular modules. Micro Mol. Biol. Rev. 76 740–772. 10.1128/mmbr.00035-12 PubMed DOI PMC

Goosens V. J., Busch A., Georgiadou M., Castagnini M., Forest K. T., Waksman G., et al. (2017). Reconstitution of a minimal machinery capable of assembling periplasmic type IV pili. Proc. Natl. Acad. Sci. USA 114 E4978–E4986. 10.1073/pnas.1618539114 PubMed DOI PMC

Hartel A. J., Glogger M., Jones N. G., Abuillan W., Batram C., Hermann A., et al. (2016). N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold. Nat. Commun. 7:12870. 10.1038/ncomms12870 PubMed DOI PMC

He Q., Vermaas W. F. J. (1999). Genetic deletion of proteins resembling type IV pilins in Synechocystis sp. PCC 6803: their role in binding or transfer of newly synthesized chlorophyll. Plant Mol. Biol. 39 1175–1188. 10.1023/a:1006177103225 PubMed DOI

Hu J., Xue Y., Lee S., Ha Y. (2011). The crystal structure of GXGD membrane protease FlaK. Nature 475 528–531. 10.1038/nature10218 PubMed DOI PMC

Jain S., Kahnt J., Van Der Does C. (2011). Processing and maturation of the pilin of the type IV secretion system encoded within the gonococcal genetic island. J. Biol. Chem. 286 43601–43610. 10.1074/jbc.M111.264028 PubMed DOI PMC

Kim Y. H., Kim J. Y., Kim S. Y., Lee J. H., Lee J. S., Chung Y. H., et al. (2009). Alteration in the glycan pattern of pilin in a nonmotile mutant of Synechocystis sp. PCC 6803. Proteomics 9 1075–1086. 10.1002/pmic.200800372 PubMed DOI

Komenda J., Krynická V., Zakar T. (2019). Isolation of thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803 and analysis of their photosynthetic pigment-protein complexes by clear native-PAGE. Bio-Protocol 9:e3126. 10.21769/BioProtoc.3126 PubMed DOI PMC

Kopečná J., Pilný J., Krynická V., Tomčala A., Kis M., Gombos Z., et al. (2015). Lack of phosphatidylglycerol inhibits Chl biosynthesis at multiple sites and limits Chlide reutilization in the cyanobacterium Synechocystis 6803. Plant Physiol. 169 1307–1317. 10.1104/pp.15.01150 PubMed DOI PMC

Kopf M., Klähn S., Scholz I., Matthiessen J. K. F., Hess W. R., Voß B. (2014). Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res. 21 527–539. 10.1093/dnares/dsu018 PubMed DOI PMC

Lai E. M., Eisenbrandt R., Kalkum M., Lanka E., Kado C. I. (2002). Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J. Bacteriol. 184 327–330. 10.1128/jb.184.1.327-330.2002 PubMed DOI PMC

LaPointe C. F., Taylor R. K. (2000). The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J. Biol. Chem. 275 1502–1510. 10.1074/jbc.275.2.1502 PubMed DOI

Li L., Fang C., Zhuang N., Wang T., Zhang Y. (2019). Structural basis for transcription initiation by bacterial ECF sigma factors. Nat. Commun. 10:1153. 10.1038/s41467-019-09096-y PubMed DOI PMC

Li X., Dang S., Yan C., Gong X., Wang J., Shi Y. (2013). Structure of a presenilin family intramembrane aspartate protease. Nature 493 56–61. 10.1038/nature11801 PubMed DOI

Linhartová M., Bučinská L., Halada P., Ječmen T., Šetlík J., Komenda J., et al. (2014). Accumulation of the Type IV prepilin triggers degradation of SecY and YidC and inhibits synthesis of Photosystem II proteins in the cyanobacterium Synechocystis PCC 6803. Mol. Microbiol. 93 1207–1223. 10.1111/mmi.12730 PubMed DOI

Liu B., Zuo Y., Steitz T. A. (2016). Structures of E. coli sigmaS-transcription initiation complexes provide new insights into polymerase mechanism. Proc. Natl. Acad. Sci. USA 113 4051–4056. 10.1073/pnas.1520555113 PubMed DOI PMC

Marceau M., Forest K., Béretti J.-L., Tainer J., Nassif X. (1998). Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol. Microbiol. 27 705–715. 10.1046/j.1365-2958.1998.00706.x PubMed DOI

Pepe J. C., Lory S. (1998). Amino acid substitutions in PilD, a bifunctional enzyme of Pseudomonas aeruginosa: Effect on leader peptidase and n-methyltransferase activities in vitro and in vivo. J. Biol. Chem. 273 19120–19129. 10.1074/jbc.273.30.19120 PubMed DOI

Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., et al. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25 1605–1612. 10.1002/jcc.20084 PubMed DOI

Pisareva T., Kwon J., Oh J., Kim S., Ge C. R., Wieslander A., et al. (2011). Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp PCC 6803 inferred from proteomics and multivariate sequence analyses. J. Proteome. Res. 10 3617–3631. 10.1021/pr200268r PubMed DOI

Porra R. J., Thompson W. A., Kriedemann P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying Chls a and b extracted with four different solvents: verification of the concentration of Chl standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975 384–394. 10.1016/S0005-2728(89)80347-0 DOI

Pugsley A. P. (1993). Processing and methylation of PulG, a pilin-like component of the general secretory pathway of Klebsiella oxytoca. Mol. Microbiol. 9 295–308. 10.1111/j.1365-2958.1993.tb01691.x PubMed DOI

Sachelaru I., Winter L., Knyazev D. G., Zimmermann M., Vogt A., Kuttner R., et al. (2017). YidC and SecYEG form a heterotetrameric protein translocation channel. Sci. Rep. 7:101. 10.1038/s41598-017-00109-8 PubMed DOI PMC

Schuergers N., Wilde A. (2015). Appendages of the cyanobacterial cell. Life 5 700–715. 10.3390/life5010700 PubMed DOI PMC

Selão T. T., Zhang L., Knoppová J., Komenda J., Norling B. (2016). Photosystem II assembly steps take place in the thylakoid membrane of the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol. 57 95–104. 10.1093/pcp/pcv178 PubMed DOI

Srivastava A., Summers M. L., Sobotka R. (2020). Cyanobacterial sigma factors: Current and future applications for biotechnological advances. Biotechnol. Adv. 40:107517. 10.1016/j.biotechadv.2020.107517 PubMed DOI

Strom M. S., Nunn D. N., Lory S. (1993). A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Nat. Acad. Sci. USA 90 2404–2408. 10.1073/pnas.90.6.2404 PubMed DOI PMC

Tajima N., Sato S., Maruyama F., Kaneko T., Sasaki N. V., Kurokawa K., et al. (2011). Genomic structure of the cyanobacterium Synechocystis sp. PCC 6803 strain GT-S. DNA Res. 18 393–399. 10.1093/dnares/dsr026 PubMed DOI PMC

Tichý M., Bečková M., Kopečná J., Noda J., Sobotka R., Komenda J. (2016). Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front. Plant Sci. 7:648. 10.3389/fpls.2016.00648 PubMed DOI PMC

Tomich M., Fine D. H., Figurski D. H. (2006). The TadV protein of Actinobacillus actinomycetemcomitans is a novel aspartic acid prepilin peptidase required for maturation of the Flp1 pilin and TadE and TadF pseudopilins. J. Bacteriol. 188 6899–6914. 10.1128/JB.00690-06 PubMed DOI PMC

Tyystjärvi T., Herranen M., Aro E. M. (2001). Regulation of translation elongation in cyanobacteria: membrane targeting of the ribosome nascent−chain complexes controls the synthesis of D1 protein. Mol. Microbiol. 40 476–484. 10.1046/j.1365-2958.2001.02402.x PubMed DOI

Vik A., Aspholm M., Anonsen J. H., Borud B., Roos N., Koomey M. (2012). Insights into type IV pilus biogenesis and dynamics from genetic analysis of a C-terminally tagged pilin: a role for O-linked glycosylation. Mol. Microbiol. 85 1166–1178. 10.1111/j.1365-2958.2012.08166.x PubMed DOI

Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12 7–8. 10.1038/nmeth.3213 PubMed DOI PMC

Yu J., Knoppová J., Michoux F., Bialek W., Cota E., Shukla M. K., et al. (2018). Ycf48 involved in the biogenesis of the oxygen-evolving photosystem II complex is a seven-bladed beta-propeller protein. Proc. Natl. Acad. Sci. USA 115 E7824–E7833. 10.1073/pnas.1800609115 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace