Mutations Suppressing the Lack of Prepilin Peptidase Provide Insights Into the Maturation of the Major Pilin Protein in Cyanobacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34712217
PubMed Central
PMC8546353
DOI
10.3389/fmicb.2021.756912
Knihovny.cz E-zdroje
- Klíčová slova
- PilD peptidase, Synechocystis, Type IV pili, photosystem II, suppressor mutations,
- Publikační typ
- časopisecké články MeSH
Type IV pili are bacterial surface-exposed filaments that are built up by small monomers called pilin proteins. Pilins are synthesized as longer precursors (prepilins), the N-terminal signal peptide of which must be removed by the processing protease PilD. A mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking the PilD protease is not capable of photoautotrophic growth because of the impaired function of Sec translocons. Here, we isolated phototrophic suppressor strains of the original ΔpilD mutant and, by sequencing their genomes, identified secondary mutations in the SigF sigma factor, the γ subunit of RNA polymerase, the signal peptide of major pilin PilA1, and in the pilA1-pilA2 intergenic region. Characterization of suppressor strains suggests that, rather than the total prepilin level in the cell, the presence of non-glycosylated PilA1 prepilin is specifically harmful. We propose that the restricted lateral mobility of the non-glycosylated PilA1 prepilin causes its accumulation in the translocon-rich membrane domains, which attenuates the synthesis of membrane proteins.
Barcelona Supercomputing Center Barcelona Spain
Biotechnology Molecular Plant Biology University of Turku Turku Finland
Faculty of Science University of South Bohemia České Budějovice Czechia
ICREA Institucio Catalana de Recerca i Estudis Avançats Passeig Lluis Companys Barcelona Spain
Institute of Microbiology of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Asayama M., Imamura S. (2008). Stringent promoter recognition and autoregulation by the group 3 sigma-factor SigF in the cyanobacterium PubMed DOI PMC
Barker M., De Vries R., Nield J., Komenda J., Nixon P. J. (2006). The Deg proteases protect PubMed DOI
Bečková M., Gardian Z., Yu J., Koník P., Nixon P. J., Komenda J. (2017). Association of Psb28 and Psb27 proteins with PSII-PSI supercomplexes upon exposure of PubMed DOI
Berry J. L., Gurung I., Anonsen J. H., Spielman I., Harper E., Hall A. M. J., et al. (2019). Global biochemical and structural analysis of the type IV pilus from the Gram-positive bacterium PubMed DOI PMC
Bhaya D., Bianco N. R., Bryant D., Grossman A. (2000). Type IV pilus biogenesis and motility in the cyanobacterium PubMed DOI
Bowers K. J., Chow E., Xu H., Dror R. O., Eastwood M. P., Gregersen B. A., et al. (2006).
Bučinská L., Kiss E., Koník P., Knoppová J., Komenda J., Sobotka R. (2018). The ribosome-bound protein Pam68 promotes insertion of Chl into the CP47 subunit of photosystem II. PubMed DOI PMC
Conradi F. D., Zhou R. Q., Oeser S., Schuergers N., Wilde A., Mullineaux C. W. (2019). Factors controlling floc formation and structure in the cyanobacterium PubMed DOI PMC
Craig L., Forest K. T., Maier B. (2019). Type IV pili: dynamics, biophysics and functional consequences. PubMed DOI
Crane J. M., Randall L. L. (2017). The Sec system: protein export in PubMed DOI PMC
Daskalakis V. (2018). Protein-protein interactions within photosystem II under photoprotection: the synergy between CP29 minor antenna, subunit S (PsbS) and zeaxanthin at all-atom resolution. PubMed DOI
Dobáková M., Sobotka R., Tichý M., Komenda J. (2009). Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium PubMed DOI PMC
Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., et al. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. PubMed DOI
Ermakova-Gerdes S., Vermaas W. F. J. (1999). Inactivation of the open reading frame PubMed DOI
Flores C., Santos M., Pereira S. B., Mota R., Rossi F., De Philippis R., et al. (2019). The alternative sigma factor SigF is a key player in the control of secretion mechanisms in PubMed DOI
Giltner C. L., Nguyen Y., Burrows L. L. (2012). Type IV pilin proteins: versatile molecular modules. PubMed DOI PMC
Goosens V. J., Busch A., Georgiadou M., Castagnini M., Forest K. T., Waksman G., et al. (2017). Reconstitution of a minimal machinery capable of assembling periplasmic type IV pili. PubMed DOI PMC
Hartel A. J., Glogger M., Jones N. G., Abuillan W., Batram C., Hermann A., et al. (2016). N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold. PubMed DOI PMC
He Q., Vermaas W. F. J. (1999). Genetic deletion of proteins resembling type IV pilins in Synechocystis sp. PCC 6803: their role in binding or transfer of newly synthesized chlorophyll. PubMed DOI
Hu J., Xue Y., Lee S., Ha Y. (2011). The crystal structure of GXGD membrane protease FlaK. PubMed DOI PMC
Jain S., Kahnt J., Van Der Does C. (2011). Processing and maturation of the pilin of the type IV secretion system encoded within the gonococcal genetic island. PubMed DOI PMC
Kim Y. H., Kim J. Y., Kim S. Y., Lee J. H., Lee J. S., Chung Y. H., et al. (2009). Alteration in the glycan pattern of pilin in a nonmotile mutant of PubMed DOI
Komenda J., Krynická V., Zakar T. (2019). Isolation of thylakoid membranes from the cyanobacterium PubMed DOI PMC
Kopečná J., Pilný J., Krynická V., Tomčala A., Kis M., Gombos Z., et al. (2015). Lack of phosphatidylglycerol inhibits Chl biosynthesis at multiple sites and limits Chlide reutilization in the cyanobacterium PubMed DOI PMC
Kopf M., Klähn S., Scholz I., Matthiessen J. K. F., Hess W. R., Voß B. (2014). Comparative analysis of the primary transcriptome of PubMed DOI PMC
Lai E. M., Eisenbrandt R., Kalkum M., Lanka E., Kado C. I. (2002). Biogenesis of T pili in PubMed DOI PMC
LaPointe C. F., Taylor R. K. (2000). The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. PubMed DOI
Li L., Fang C., Zhuang N., Wang T., Zhang Y. (2019). Structural basis for transcription initiation by bacterial ECF sigma factors. PubMed DOI PMC
Li X., Dang S., Yan C., Gong X., Wang J., Shi Y. (2013). Structure of a presenilin family intramembrane aspartate protease. PubMed DOI
Linhartová M., Bučinská L., Halada P., Ječmen T., Šetlík J., Komenda J., et al. (2014). Accumulation of the Type IV prepilin triggers degradation of SecY and YidC and inhibits synthesis of Photosystem II proteins in the cyanobacterium PubMed DOI
Liu B., Zuo Y., Steitz T. A. (2016). Structures of PubMed DOI PMC
Marceau M., Forest K., Béretti J.-L., Tainer J., Nassif X. (1998). Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. PubMed DOI
Pepe J. C., Lory S. (1998). Amino acid substitutions in PilD, a bifunctional enzyme of PubMed DOI
Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., et al. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. PubMed DOI
Pisareva T., Kwon J., Oh J., Kim S., Ge C. R., Wieslander A., et al. (2011). Model for membrane organization and protein sorting in the cyanobacterium PubMed DOI
Porra R. J., Thompson W. A., Kriedemann P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying Chls DOI
Pugsley A. P. (1993). Processing and methylation of PulG, a pilin-like component of the general secretory pathway of PubMed DOI
Sachelaru I., Winter L., Knyazev D. G., Zimmermann M., Vogt A., Kuttner R., et al. (2017). YidC and SecYEG form a heterotetrameric protein translocation channel. PubMed DOI PMC
Schuergers N., Wilde A. (2015). Appendages of the cyanobacterial cell. PubMed DOI PMC
Selão T. T., Zhang L., Knoppová J., Komenda J., Norling B. (2016). Photosystem II assembly steps take place in the thylakoid membrane of the cyanobacterium PubMed DOI
Srivastava A., Summers M. L., Sobotka R. (2020). Cyanobacterial sigma factors: Current and future applications for biotechnological advances. PubMed DOI
Strom M. S., Nunn D. N., Lory S. (1993). A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. PubMed DOI PMC
Tajima N., Sato S., Maruyama F., Kaneko T., Sasaki N. V., Kurokawa K., et al. (2011). Genomic structure of the cyanobacterium PubMed DOI PMC
Tichý M., Bečková M., Kopečná J., Noda J., Sobotka R., Komenda J. (2016). Strain of PubMed DOI PMC
Tomich M., Fine D. H., Figurski D. H. (2006). The TadV protein of PubMed DOI PMC
Tyystjärvi T., Herranen M., Aro E. M. (2001). Regulation of translation elongation in cyanobacteria: membrane targeting of the ribosome nascent−chain complexes controls the synthesis of D1 protein. PubMed DOI
Vik A., Aspholm M., Anonsen J. H., Borud B., Roos N., Koomey M. (2012). Insights into type IV pilus biogenesis and dynamics from genetic analysis of a C-terminally tagged pilin: a role for O-linked glycosylation. PubMed DOI
Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. (2015). The I-TASSER Suite: protein structure and function prediction. PubMed DOI PMC
Yu J., Knoppová J., Michoux F., Bialek W., Cota E., Shukla M. K., et al. (2018). Ycf48 involved in the biogenesis of the oxygen-evolving photosystem II complex is a seven-bladed beta-propeller protein. PubMed DOI PMC