Cyanophycinase is required for heterotrophy in cyanobacteria

. 2025 Dec ; 301 (12) : 110791. [epub] 20251007

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41062069
Odkazy

PubMed 41062069
PubMed Central PMC12661447
DOI 10.1016/j.jbc.2025.110791
PII: S0021-9258(25)02643-2
Knihovny.cz E-zdroje

Cyanophycin is a biopolymer of arginine (Arg) and aspartate, and it is found in various prokaryotes. Two key enzymes of cyanophycin metabolism are cyanophycin synthase (CphA), producing cyanophycin, and cyanophycinase (CphB), catalyzing the first step of cyanophycin degradation. CphB is a well-conserved enzyme found in the majority of cyanobacteria and ubiquitous amongst those that are known to perform heterotrophy besides their primary photosynthetic lifestyle. Unlike in diazotrophs, where CphB is connected to the mobilization of fixed nitrogen, the importance of this enzyme remains elusive in nondiazotrophs, such as the model cyanobacterium Synechocystis sp. PCC 6803. The Synechocystis ΔcphB deletion strain does not accumulate cyanophycin and shows no photoautotrophic growth defect. However, we show here that ΔcphB is not able to proliferate heterotrophically, although the CphA-less strain exhibits no obvious defect under heterotrophic conditions. Metabolomics profiling revealed that ΔcphB failed to upregulate the biosynthesis of Arg and displayed misregulated carbon and nucleoside metabolisms. These suggest that CphB is needed for the activation of the Arg pathway, which appeared to be crucial for balancing the nitrogen and carbon ratio during the acclimation to heterotrophy. On the other hand, the interaction of CphB with the Arg biosynthetic enzyme, acetylornithine aminotransferase, stimulated the hydrolysis of cyanophycin in an in vitro assay. These data, together with the metabolic profiles of ΔcphB, imply that the catabolism of cyanophycin and the biosynthesis of Arg are mutually coregulated metabolic pathways.

Zobrazit více v PubMed

Chen M.-Y., Teng W.-K., Zhao L., Han B.-P., Song L.-R., Shu W.-S. Phylogenomics uncovers evolutionary trajectory of nitrogen fixation in Cyanobacteria. Mol. Biol. Evol. 2022;39 PubMed PMC

Stebegg R., Schmetterer G., Rompel A. Heterotrophy among Cyanobacteria. ACS Omega. 2023;8:33098–33114. PubMed PMC

Barone G.D., Hubáček M., Malihan-Yap L., Grimm H.C., Nikkanen L., Pacheco C.C., et al. Towards the rate limit of heterologous biotechnological reactions in recombinant Cyanobacteria. Biotechnol. Biofuels Bioproducts. 2023;16:4. PubMed PMC

Meireles dos Santos A., Vieira K.R., Basso Sartori R., Meireles dos Santos A., Queiroz M.I., Queiroz Zepka L., et al. Heterotrophic cultivation of cyanobacteria: study of effect of exogenous sources of organic carbon, absolute amount of nutrients, and stirring speed on biomass and lipid productivity. Front. Bioeng. Biotechnol. 2017;5:12. PubMed PMC

Monshupanee T., Nimdach P., Incharoensakdi A. Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Sci. Rep. 2016;6 PubMed PMC

Karageorgou D., Patel A., Rova U., Christakopoulos P., Katapodis P., Matsakas L. Heterotrophic cultivation of the cyanobacterium pseudanabaena sp. on forest biomass hydrolysates toward sustainable biodiesel production. Microorganisms. 2022;10:1756. PubMed PMC

Mills L.A., McCormick A.J., Lea-Smith D.J. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci. Rep. 2020;40 PubMed PMC

Koskinen S., Kurkela J., Linhartová M., Tyystjärvi T. The genome sequence of Synechocystis sp. PCC 6803 substrain GT-T and its implications for the evolution of PCC 6803 substrains. FEBS Open Bio. 2023;13:701–712. PubMed PMC

Anderson S.L., McIntosh L. Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J. Bacteriol. 1991;173:2761–2767. PubMed PMC

Tabei Y., Okada K., Makita N., Tsuzuki M. Light-induced gene expression of fructose 1,6-bisphosphate aldolase during heterotrophic growth in a cyanobacterium, Synechocystis sp. PCC 6803. FEBS J. 2009;276:187–198. PubMed

Muth-Pawlak D., Kreula S., Gollan P.J., Huokko T., Allahverdiyeva Y., Aro E.-M. Patterning of the autotrophic, mixotrophic, and heterotrophic proteomes of oxygen-evolving cyanobacterium Synechocystis sp. PCC 6803. Front. Microbiol. 2022;13 PubMed PMC

Makowka A., Nichelmann L., Schulze D., Spengler K., Wittmann C., Forchhammer K., et al. Glycolytic shunts replenish the calvin–benson–bassham cycle as anaplerotic reactions in Cyanobacteria. Mol. Plant. 2020;13:471–482. PubMed

Scanlan D.J., Sundaram S., Newman J., Mann N.H., Carr N.G. Characterization of a zwf mutant of Synechococcus sp. strain PCC 7942. J. Bacteriol. 1995;177:2550–2553. PubMed PMC

Jansén T., Kurian D., Raksajit W., York S., Summers M.L., Mäenpää P. Characterization of trophic changes and a functional oxidative pentose phosphate pathway in Synechocystis sp. PCC 6803. Acta Physiol. Plant. 2010;32:511–518.

Yang C., Hua Q., Shimizu K. Metabolic flux analysis in Synechocystis using isotope distribution from C-13-labeled glucose. Metab. Eng. 2002;4:202–216. PubMed

Wan N., DeLorenzo D.M., He L., You L., Immethun C.M., Wang G., et al. Cyanobacterial carbon metabolism: fluxome plasticity and oxygen dependence. Biotechnol. Bioeng. 2017;114:1593–1602. PubMed

Kurian D., Jansèn T., Mäenpää P. Proteomic analysis of heterotrophy in Synechocystis sp. PCC 6803. Proteomics. 2006;6:1483–1494. PubMed

Tabei Y., Okada K., Tsuzuki M. Sll1330 controls the expression of glycolytic genes in Synechocystis sp. PCC 6803. Biochem. Biophys. Res. Commun. 2007;355:1045–1050. PubMed

Plohnke N., Seidel T., Kahmann U., Rogner M., Schneider D., Rexroth S. The proteome and lipidome of Synechocystis sp. PCC 6803 cells grown under light-activated heterotrophic conditions. Mol. Cell Proteomics. 2015;14:572–584. PubMed PMC

Forchhammer K., Selim K.A. Carbon/nitrogen homeostasis control in Cyanobacteria. FEMS Microbiol. Rev. 2019;44:33–53. PubMed PMC

Zhang H., Liu Y., Nie X., Liu L., Hua Q., Zhao G.P., et al. The cyanobacterial ornithine-ammonia cycle involves an arginine dihydrolase. Nat. Chem. Biol. 2018;14:575–581. PubMed

Lang N.J. The fine structure of blue-green algae. Annu. Rev. Microbiol. 1968;22:15–46. PubMed

Simon R.D., Weathers P. Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in Cyanobacteria. Biochim. Biophys. Acta (Bba) 1976;420:165–176. PubMed

Richter R., Hejazi M., Kraft R., Ziegler K., Lockau W. Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid (cyanophycin): molecular cloning of the gene of Synechocystis sp. PCC 6803, expression in Escherichia coli, and biochemical characterization of the purified enzyme. Eur. J. Biochem. 1999;263:163–169. PubMed

Li H., Sherman D.M., Bao S.L., Sherman L.A. Pattern of cyanophycin accumulation in nitrogen-fixing and non-nitrogen-fixing Cyanobacteria. Arch. Microbiol. 2001;176:9–18. PubMed

Kiss É., Talbot J., Adams N.B.P., Opekar S., Moos M., Pilný J., et al. Chlorophyll biosynthesis under the control of arginine metabolism. Cell Rep. 2023;42 PubMed PMC

Burnat M., Herrero A., Flores E. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Proc. Natl. Acad. Sci. U. S. A. 2014;111:3823–3828. PubMed PMC

Füser G., Steinbüchel A. Analysis of genome sequences for genes of cyanophycin metabolism: identifying putative cyanophycin metabolizing prokaryotes. Macromol. Biosci. 2007;7:278–296. PubMed

Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500. PubMed PMC

Sharon I., Grogg M., Hilvert D., Schmeing T.M. The structure of cyanophycinase in complex with a cyanophycin degradation intermediate. Biochim. Biophys. Acta (Bba) 2022;1866 PubMed

Li Z.-M., Bai F., Wang X., Xie C., Wan Y., Li Y., et al. Kinetic characterization and catalytic mechanism of N-acetylornithine aminotransferase encoded by slr1022 gene from Synechocystis sp. PCC6803. Int. J. Mol. Sci. 2023;24:5853. PubMed PMC

Watzer B., Forchhammer K. Cyanophycin synthesis optimizes nitrogen utilization in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol. 2018;84 PubMed PMC

Sancho-Vaello E., Fernández-Murga M.L., Rubio V. Mechanism of arginine regulation of acetylglutamate synthase, the first enzyme of arginine synthesis. FEBS Lett. 2009;583:202–206. PubMed

Maheswaran M., Ziegler K., Lockau W., Hagemann M., Forchhammer K. PII-regulated arginine synthesis controls accumulation of cyanophycin in Synechocystis sp. strain PCC 6803. J. Bacteriol. 2006;188:2730–2734. PubMed PMC

Liu D., Yang C. The nitrogen-regulated response regulator NrrA controls cyanophycin synthesis and glycogen catabolism in the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 2014;289:2055–2071. PubMed PMC

Reyes J.C., Chávez S., Muro-Pastor M.I., Candau P., Florencio F.J. Effect of glucose utilization on nitrite excretion by the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol. 1993;59:3161–3163. PubMed PMC

Leiva L.E., Zegarra V., Bange G., Ibba M. At the crossroad of nucleotide dynamics and protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 2023;87 PubMed PMC

Bellin L., Garza Amaya D.L., Scherer V., Pruß T., John A., Richter A., et al. Nucleotide imbalance, provoked by downregulation of aspartate transcarbamoylase impairs cold acclimation in Arabidopsis. Molecules. 2023;28 PubMed PMC

Yang H., Park S.M., Nolan W.G., Lu C.D., Abdelal A.T. Cloning and characterization of the arginine-specific carbamoyl-phosphate synthetase from Bacillus stearothermophilus. Eur. J. Biochem. 1997;249:443–449. PubMed

Quinn C.L., Stephenson B.T., Switzer R.L. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J. Biol. Chem. 1991;266:9113–9127. PubMed

Thoden J.B., Holden H.M., Wesenberg G., Raushel F.M., Rayment I. Structure of carbamoyl phosphate synthetase: a journey of 96 A from substrate to product. Biochemistry. 1997;36:6305–6316. PubMed

Rapp J., Forchhammer K. 5-deoxyadenosine metabolism: more than "waste disposal". Microb. Physiol. 2021;31:248–259. PubMed

Zhao Z., Crossland W.J., Kulkarni J.S., Wakade T.D., Wakade A.R. 2’-Deoxyadenosine causes cell death in embryonic chicken sympathetic ganglia and brain. Cell Tissue Res. 1999;296:281–291. PubMed

Zhang C.-C., Jeanjean R., Joset F. Obligate phototrophy in cyanobacteria: more than a lack of sugar transport. FEMS Microbiol. Lett. 1998;161:285–292. PubMed

Tichý M., Bečková M., Kopečná J., Noda J., Sobotka R., Komenda J. Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front. Plant Sci. 2016;7:648. PubMed PMC

Koskela M.M., Skotnicová P., Kiss É., Sobotka R. Purification of protein-complexes from the cyanobacterium Synechocystis sp. PCC 6803 using FLAG-affinity chromatography. Bio-Protocol. 2020;10 PubMed PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Meth. 2012;9:671–675. PubMed PMC

Moos M., Korbelová J., Štětina T., Opekar S., Šimek P., Grgac R., et al. Cryoprotective metabolites are sourced from both external diet and internal macromolecular reserves during metabolic reprogramming for freeze tolerance in drosophilid fly. Chymomyza Costata. Metabol. 2022;12 PubMed PMC

Gründel M., Scheunemann R., Lockau W., Zilliges Y. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology (Read) 2012;158:3032–3043. PubMed

Klotz A., Forchhammer K. Glycogen, a major player for bacterial survival and awakening from dormancy. Future Microbiol. 2017;12:101–104. PubMed

Skotnicová P., Srivastava A., Aggarwal D., Talbot J., Karlínová I., Moos M., et al. A thylakoid biogenesis BtpA protein is required for the initial step of tetrapyrrole biosynthesis in Cyanobacteria. New Phytol. 2024;241:1236–1249. PubMed

Parks D.H., Chuvochina M., Rinke C., Mussig A.J., Chaumeil P.-A., Hugenholtz P. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2021;50:D785–D794. PubMed PMC

Chaumeil P.-A., Mussig A.J., Hugenholtz P., Parks D.H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics. 2022;38:5315–5316. PubMed PMC

Nguyen L.-T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2014;32:268–274. PubMed PMC

Wang J., Chitsaz F., Derbyshire M.K., Gonzales N.R., Gwadz M., Lu S., et al. The conserved domain database in 2023. Nucleic Acids Res. 2023;51:D384–D388. PubMed PMC

Schwark M., Martínez Yerena J.A., Röhrborn K., Hrouzek P., Divoká P., Štenclová L., et al. More than just an eagle killer: the freshwater cyanobacterium Aetokthonos hydrillicola produces highly toxic dolastatin derivatives. Proc. Natl. Acad. Sci. USA. 2023;120 PubMed PMC

Trautmann A., Watzer B., Wilde A., Forchhammer K., Posten C. Effect of phosphate availability on cyanophycin accumulation in Synechocystis sp. PCC 6803 and the production strain BW86. Algal Res. 2016;20:189–196.

Sallam A., Kast A., Przybilla S., Meiswinkel T., Steinbüchel A. Biotechnological process for production of beta-dipeptides from cyanophycin on a technical scale and its optimization. Appl. Environ. Microbiol. 2009;75:29–38. PubMed PMC

Peterka O., Langová A., Jirásko R., Holčapek M. Bioinert UHPLC system improves sensitivity and peak shapes for ionic metabolites. J. Chromatogr. A. 2025;1740 PubMed

Rajaram V., Ratna Prasuna P., Savithri H.S., Murthy M.R.N. Structure of biosynthetic N-acetylornithine aminotransferase from Salmonella typhimurium: studies on substrate specificity and inhibitor binding. Proteins: Struct. Funct. Bioinform. 2008;70:429–441. PubMed

Meng E.C., Goddard T.D., Pettersen E.F., Couch G.S., Pearson Z.J., Morris J.H., et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 2023;32 PubMed PMC

Miyashita H., Ikemoto H., Kurano N., Adachi K., Chihara M., Miyachi S. Chlorophyll d as a major pigment. Nature. 1996;383:402.

Miyashita H., Ikemoto H., Kurano N., Miyachi S., Chihara M. Acaryochloris marina gen. et. sp. Nov. (cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J. Phycol. 2003;39:1247–1253.

Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales) Bacteriol. Rev. 1971;35:171–205. PubMed PMC

Rippka R., Deruelles J., Waterbury J.B., Herdman M., Stanier R.Y. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. Microbiology. 1979;111:1–61.

Moro I.R.N., La Rocca N., Di Bella M., Andreoli C. Cyanobacterium aponinum, a new Cyanoprokaryote from the microbial mat of Euganean thermal springs (Padua, Italy) Algological Stud. 2007;123:1–15.

Lin J.-Y., Ng I.S. Thermal cultivation of halophilic Cyanobacterium aponinum for c-phycocyanin production and simultaneously reducing carbon emission using wastewater. Chem. Eng. J. 2023;461

Rippka R., Cohen-Bazire G. The cyanobacteriales: a legitimate order based on the type strain Cyanobacterium stanieri? Ann. de l'Institut Pasteur/Microbiol. 1983;134:21–36. PubMed

Gerloff G.C., Fitzgerald G.P., Skoog F. In: Proceedings of the Symposium on the Culturing of Algae. Dayton. Charles F., editor. Kettering Foundation; Ohio: 1950. The isolation, purification and nutrient solution requirements of blue-green algae."; p. 44.

Robertson B.R., Tezuka N., Watanabe M.M. Phylogenetic analyses of Synechococcus strains (Cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol. 2001;51:861–871. PubMed

Laloui W., Palinska K.A., Rippka R., Partensky F., deMarsac N.T., Herdman M., et al. Genotyping of axenic and non-axenic isolates of the genus Prochlorococcus and the OMF-'Synechococcus' clade by size, sequence analysis or RFLP of the internal transcribed spacer of the ribosomal operon. Microbiol. SGM. 2002;148:453–465. PubMed

Ernst A., Becker S., Wollenzien U.I.A., Postius C. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology. 2003;149:217–228. PubMed

Bandyopadhyay A., Elvitigala T., Welsh E., Stockel J., Liberton M., Min H.T., et al. Novel metabolic attributes of the genus Cyanothece, comprising a group of unicellular nitrogen-fixing Cyanobacteria. Mbio. 2011;2 PubMed PMC

Welsh E.A., Liberton M., Stoeckel J., Loh T., Elvitigala T., Wang C., et al. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc. Natl. Acad. Sci. USA. 2008;105:15094–15099. PubMed PMC

Reddy K.J., Haskell J.B., Sherman D.M., Sherman L.A. Unicellular, aerobic nitrogen-fixing Cyanobacteria of the genus cyanothece. J. Bacteriol. 1993;175:1284–1292. PubMed PMC

Garlick S., Oren A., Padan E. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular Cyanobacteria. J. Bacteriol. 1977;129:623–629. PubMed PMC

Otsuka S., Suda S., Li R., Watanabe M., Oyaizu H., Matsumoto S., et al. Characterization of morphospecies and strains of the genus Microcystis (Cyanobacteria) for a reconsideration of species classification. Phycol Res. 1999;47:189–197.

Kratz W.A., Myers J. Nutrition and growth of several blue-green algae. Am. J. Bot. 1955;42:282–287.

Grigorieva G.A., Shestakov S.V. In: Proceedings of the 2nd International Symposium on Photosynthetic Prokaryotes. Codd G.A., Stewart W.D.P., editors. Plenum Publishing; New York, NY: 1979. Application of the genetic transformation method for taxonomic analysis of unicellular blue-green algae; pp. 220–222.

Shestakov S.V. Gene transfer and host-vector systems of Cyanobacteria. Oxf Surv. Plant Mol. Cell Biol. 1987;4:137–166.

Li Y., Rao N.N., Yang Y., Zhang Y., Gu Y.N. Gene annotation and functional analysis of a newly sequenced Synechococcus strain. Genet. Mol. Res. 2015;14:12416–12426. PubMed

Waterbury J.B., Stanier R.Y. Patterns of growth and development in pleurocapsalean Cyanobacteria. Microbiol. Rev. 1978;42:2–44. PubMed PMC

Garcia-Pichel F., Prufert-Bebout L., Muyzer G. Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl. Environ. Microbiol. 1996;62:3284–3291. PubMed PMC

Siegesmund M.A., Johansen J.R., Karsten U., Friedl T. Coleofasciculus gen. nov. (cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus gomont (1) J. Phycol. 2008;44:1572–1585. PubMed

Rippka R., Herdmann H. I. Institut Pasteur; Paris: 1992. Pasteur culture collection of cyanobacterial strains in axenic culture. Cyanobacteria catalogue & taxonomic handbook. (Catalogue of strains 1992/1993).

Shih P.M., Wu D., Latifi A., Axen S.D., Fewer D.P., Talla E., et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl. Acad. Sci. U S A. 2013;110:1053–1058. PubMed PMC

Baalen C.V. Studies on marine blue-green algae. Bot. Mar. 1962;4:129–139.

Perkerson Iii R.B., Johansen J.R., Kovácik L., Brand J., Kaštovský J., Casamatta D.A. A unique pseudanabaenalean (cyanobacteria) gens nodosilinea gen. nov. based on morphological and molecular data. J. Phycol. 2011;47:1397–1412. PubMed

Lachance M.-A. Genetic relatedness of heterocystous Cyanobacteria by deoxyribonucleic acid-deoxyribonucleic acid reassociation. Int. J. Syst. Evol. Microbiol. 1981;31:139–147.

Kenyon C.N., Rippka R., Stanier R.Y. Fatty acid composition and physiological properties of some filamentous blue-green algae. Archiv. für Mikrobiol. 1972;83:216–236. PubMed

Ekman M., Picossi S., Campbell E.L., Meeks J.C., Flores E. A Nostoc punctiforme sugar transporter necessary to establish a cyanobacterium-plant symbiosis. Plant Physiol. 2013;161:1984–1992. PubMed PMC

Gagunashvili A.N., Andrésson Ó.S. Distinctive characters of Nostoc genomes in cyanolichens. BMC Genomics. 2018;19:434. PubMed PMC

Adolph K.W., Haselkorn R. Isolation and characterization of a virus infecting the blue-green alga Nostoc muscorum. Virology. 1971;46:200–208. PubMed

Stebegg R., Wurzinger B., Mikulic M., Schmetterer G. Chemoheterotrophic growth of the cyanobacterium Anabaena sp. strain PCC 7120 dependent on a functional cytochrome c oxidase. J. Bacteriol. 2012;194:4601–4607. PubMed PMC

Kettler G.C., Martiny A.C., Huang K., Zucker J., Coleman M.L., Rodrigue S., et al. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet. 2007;3 PubMed PMC

Biller S.J., Berube P.M., Berta-Thompson J.W., Kelly L., Roggensack S.E., Awad L., et al. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Sci. Data. 2014;1 PubMed PMC

Walter J.M., Coutinho F.H., Dutilh B.E., Swings J., Thompson F.L., Thompson C.C. Ecogenomics and taxonomy of Cyanobacteria phylum. Front. Microbiol. 2017;8 PubMed PMC

Scanlan D.J., Mann N.H., Carr N.G. The response of the picoplanktonic marine cyanobacterium Synechococcus species WH7803 to phosphate starvation involves a protein homologous to the periplasmic phosphate-binding protein of Escherichia coli. Mol. Microbiol. 1993;10:181–191. PubMed

Palenik B. In: Functional Genomics and Evolution of Photosynthetic Systems. Burnap R., Vermaas W., editors. Springer Netherlands; Dordrecht: 2012. Recent functional genomics studies in marine Synechococcus; pp. 103–118.

Toledo G., Palenik B., Brahamsha B. Swimming marine Synechococcus strains with widely different photosynthetic pigment ratios form a monophyletic group. Appl. Environ. Microbiol. 1999;65:5247–5251. PubMed PMC

Coutinho F.H., Dutilh B.E., Thompson C.C., Thompson F.L. Proposal of fifteen new species of Parasynechococcus based on genomic, physiological and ecological features. Arch. Microbiol. 2016;198:973–986. PubMed

Walworth N., Pfreundt U., Nelson W.C., Mincer T., Heidelberg J.F., Fu F., et al. Trichodesmium genome maintains abundant, widespread noncoding DNA in situ, despite oligotrophic lifestyle. Proc. Natl. Acad. Sci. U S A. 2015;112:4251–4256. PubMed PMC

Prufert-Bebout L., Paerl H.W., Lassen C. Growth, nitrogen fixation, and spectral attenuation in cultivated Trichodesmium species. Appl. Environ. Microbiol. 1993;59:1367–1375. PubMed PMC

Nakamura Y., Kaneko T., Sato S., Ikeuchi M., Katoh H., Sasamoto S., et al. Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res. 2002;9:123–130. PubMed

Zilliges Y., Dau H. Unexpected capacity for organic carbon assimilation by Thermosynechococcus elongatus, a crucial photosynthetic model organism. FEBS Lett. 2016;590:962–970. PubMed

Adhikary S.P., Pattnaik H. Growth response of Westiellopsis prolifica janet to organic substrates in light and dark. Hydrobiologia. 1979;67:241–247.

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. PubMed PMC

Waterhouse A.M., Procter J.B., Martin D.M.A., Clamp M., Barton G.J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. PubMed PMC

Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 1986;50:314–352. PubMed PMC

Flores E., Arévalo S., Burnat M. Cyanophycin and arginine metabolism in Cyanobacteria. Algal Res. 2019;42

Gonzalez-Esquer C.R., Smarda J., Rippka R., Axen S.D., Guglielmi G., Gugger M., et al. Cyanobacterial ultrastructure in light of genomic sequence data. Photosynth Res. 2016;129:147–157. PubMed

Welkie D.G., Lee B.H., Sherman L.A. Altering the structure of carbohydrate storage granules in the cyanobacterium Synechocystis sp. Strain PCC 6803 through branching-enzyme truncations. J. Bacteriol. 2015;198:701–710. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...