Carbon use efficiencies and allocation strategies in Prochlorococcus marinus strain PCC 9511 during nitrogen-limited growth

. 2017 Oct ; 134 (1) : 71-82. [epub] 20170718

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28721457

Grantová podpora
LH11064 Ministry of Education (CZ)
LO 1416 Ministry of Education (CZ)
143/2013/P GAJU (CZ)

Odkazy

PubMed 28721457
DOI 10.1007/s11120-017-0418-3
PII: 10.1007/s11120-017-0418-3
Knihovny.cz E-zdroje

We studied cell properties including carbon allocation dynamics in the globally abundant and important cyanobacterium Prochlorococcus marinus strain PCC 9511 grown at three different growth rates in nitrogen-limited continuous cultures. With increasing nitrogen limitation, cellular divinyl chlorophyll a and the functional absorption cross section of Photosystem II decreased, although maximal photosynthetic efficiency of PSII remained unaltered across all N-limited growth rates. Chl-specific gross and net carbon primary production were also invariant with nutrient-limited growth rate, but only 20% of Chl-specific gross carbon primary production was retained in the biomass across all growth rates. In nitrogen-replete cells, 60% of the assimilated carbon was incorporated into the protein pool while only 30% was incorporated into carbohydrates. As N limitation increased, new carbon became evenly distributed between these two pools. While many of these physiological traits are similar to those measured in other algae, there are also distinct differences, particularly the lower overall efficiency of carbon utilization. The latter provides new information needed for understanding and estimating primary production, particularly in the nutrient-limited tropical oceans where P. marinus dominates phytoplankton community composition.

Zobrazit více v PubMed

PLoS One. 2009;4(4):e5135 PubMed

J Phycol. 2011 Apr;47(2):313-23 PubMed

Metabolites. 2014 Apr 29;4(2):260-80 PubMed

Photosynth Res. 2001;70(1):53-71 PubMed

J Exp Bot. 2007;58(8):2101-12 PubMed

Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9824-9 PubMed

Biochim Biophys Acta. 2016 Sep;1857(9):1380-91 PubMed

Microbiol Mol Biol Rev. 1999 Mar;63(1):106-27 PubMed

Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2687-703 PubMed

Biochim Biophys Acta. 2008 Mar;1777(3):269-76 PubMed

New Phytol. 2013 Jun;198(4):1030-8 PubMed

Biochim Biophys Acta. 1998 Oct 5;1367(1-3):88-106 PubMed

J Phycol. 2011 Feb;47(1):66-76 PubMed

PLoS One. 2012;7(10):e47036 PubMed

Ann Rev Mar Sci. 2011;3:427-51 PubMed

Int J Syst Evol Microbiol. 2000 Sep;50 Pt 5:1833-47 PubMed

PLoS One. 2015 Sep 22;10(9):e0139061 PubMed

Gene. 2005 Apr 11;349:15-24 PubMed

Biotechnol Bioeng. 2009 May 1;103(1):123-9 PubMed

Trends Microbiol. 2002 Mar;10(3):134-42 PubMed

Science. 1995 Jun 9;268(5216):1480-2 PubMed

Science. 1998 Jul 10;281(5374):237-40 PubMed

Nature. 2003 Aug 28;424(6952):1042-7 PubMed

Ann Rev Mar Sci. 2010;2:305-31 PubMed

Photosynth Res. 2012 Mar;111(1-2):173-83 PubMed

Science. 1998 Jul 10;281(5374):200-7 PubMed

Life (Basel). 2015 Feb 04;5(1):403-17 PubMed

Ann Rev Mar Sci. 2015;7:265-97 PubMed

Photosynth Res. 2010 Feb;103(2):125-37 PubMed

PLoS One. 2013;8(3):e58137 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Comprehensive Study of Light Quality Acclimation in Synechocystis Sp. PCC 6803

. 2024 Sep 03 ; 65 (8) : 1285-1297.

Quantitative models of nitrogen-fixing organisms

. 2020 ; 18 () : 3905-3924. [epub] 20201121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...