Carbon use efficiencies and allocation strategies in Prochlorococcus marinus strain PCC 9511 during nitrogen-limited growth
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LH11064
Ministry of Education (CZ)
LO 1416
Ministry of Education (CZ)
143/2013/P
GAJU (CZ)
PubMed
28721457
DOI
10.1007/s11120-017-0418-3
PII: 10.1007/s11120-017-0418-3
Knihovny.cz E-zdroje
- Klíčová slova
- Carbon allocation, Cyanobacteria, Nitrogen limitation, Primary production, Prochlorococcus marinus,
- MeSH
- dusík metabolismus MeSH
- Prochlorococcus metabolismus MeSH
- sinice metabolismus MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- uhlík MeSH
We studied cell properties including carbon allocation dynamics in the globally abundant and important cyanobacterium Prochlorococcus marinus strain PCC 9511 grown at three different growth rates in nitrogen-limited continuous cultures. With increasing nitrogen limitation, cellular divinyl chlorophyll a and the functional absorption cross section of Photosystem II decreased, although maximal photosynthetic efficiency of PSII remained unaltered across all N-limited growth rates. Chl-specific gross and net carbon primary production were also invariant with nutrient-limited growth rate, but only 20% of Chl-specific gross carbon primary production was retained in the biomass across all growth rates. In nitrogen-replete cells, 60% of the assimilated carbon was incorporated into the protein pool while only 30% was incorporated into carbohydrates. As N limitation increased, new carbon became evenly distributed between these two pools. While many of these physiological traits are similar to those measured in other algae, there are also distinct differences, particularly the lower overall efficiency of carbon utilization. The latter provides new information needed for understanding and estimating primary production, particularly in the nutrient-limited tropical oceans where P. marinus dominates phytoplankton community composition.
Zobrazit více v PubMed
PLoS One. 2009;4(4):e5135 PubMed
J Phycol. 2011 Apr;47(2):313-23 PubMed
Metabolites. 2014 Apr 29;4(2):260-80 PubMed
Photosynth Res. 2001;70(1):53-71 PubMed
J Exp Bot. 2007;58(8):2101-12 PubMed
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9824-9 PubMed
Biochim Biophys Acta. 2016 Sep;1857(9):1380-91 PubMed
Microbiol Mol Biol Rev. 1999 Mar;63(1):106-27 PubMed
Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2687-703 PubMed
Biochim Biophys Acta. 2008 Mar;1777(3):269-76 PubMed
New Phytol. 2013 Jun;198(4):1030-8 PubMed
Biochim Biophys Acta. 1998 Oct 5;1367(1-3):88-106 PubMed
J Phycol. 2011 Feb;47(1):66-76 PubMed
PLoS One. 2012;7(10):e47036 PubMed
Ann Rev Mar Sci. 2011;3:427-51 PubMed
Int J Syst Evol Microbiol. 2000 Sep;50 Pt 5:1833-47 PubMed
PLoS One. 2015 Sep 22;10(9):e0139061 PubMed
Gene. 2005 Apr 11;349:15-24 PubMed
Biotechnol Bioeng. 2009 May 1;103(1):123-9 PubMed
Trends Microbiol. 2002 Mar;10(3):134-42 PubMed
Science. 1995 Jun 9;268(5216):1480-2 PubMed
Science. 1998 Jul 10;281(5374):237-40 PubMed
Nature. 2003 Aug 28;424(6952):1042-7 PubMed
Ann Rev Mar Sci. 2010;2:305-31 PubMed
Photosynth Res. 2012 Mar;111(1-2):173-83 PubMed
Science. 1998 Jul 10;281(5374):200-7 PubMed
Life (Basel). 2015 Feb 04;5(1):403-17 PubMed
Ann Rev Mar Sci. 2015;7:265-97 PubMed
Photosynth Res. 2010 Feb;103(2):125-37 PubMed
PLoS One. 2013;8(3):e58137 PubMed
A Comprehensive Study of Light Quality Acclimation in Synechocystis Sp. PCC 6803
Quantitative models of nitrogen-fixing organisms