Predicting the electron requirement for carbon fixation in seas and oceans
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem
PubMed
23516441
PubMed Central
PMC3596381
DOI
10.1371/journal.pone.0058137
PII: PONE-D-12-31415
Knihovny.cz E-zdroje
- MeSH
- Bacteria metabolismus MeSH
- časoprostorová analýza MeSH
- dusičnany chemie MeSH
- ekosystém MeSH
- elektrony * MeSH
- fytoplankton metabolismus MeSH
- koloběh uhlíku * MeSH
- mořská voda chemie mikrobiologie MeSH
- zeměpis MeSH
- životní prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusičnany MeSH
Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which electron transfer rates (ETR) and ultimately CO2-fixation rates can be derived. Consequently, conversions of ETRs to CO2-fixation requires knowledge of the electron requirement for carbon fixation (Φe,C, ETR/CO2 uptake rate) and its dependence on environmental gradients. Such knowledge is critical for large scale implementation of active fluorescence to better characterise CO2-uptake. Here we examine the variability of experimentally determined Φe,C values in relation to key environmental variables with the aim of developing new working algorithms for the calculation of Φe,C from environmental variables. Coincident FRRf and (14)C-uptake and environmental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, multivariate approach. Combining all studies, Φe,C varied between 1.15 and 54.2 mol e(-) (mol C)(-1) with a mean of 10.9 ± 6.91 mol e(-) mol C)(-1). Although variability of Φe,C was related to environmental gradients at global scales, region-specific analyses provided far improved predictive capability. However, use of regional Φ e,C algorithms requires objective means of defining regions of interest, which remains challenging. Considering individual studies and specific small-scale regions, temperature, nutrient and light availability were correlated with Φ e,C albeit to varying degrees and depending on the study/region and the composition of the extant phytoplankton community. At the level of large biogeographic regions and distinct water masses, Φ e,C was related to nutrient availability, chlorophyll, as well as temperature and/or salinity in most regions, while light availability was also important in Baltic Sea and shelf waters. The novel Φ e,C algorithms provide a major step forward for widespread fluorometry-based NPP estimates and highlight the need for further studying the natural variability of Φe,C to verify and develop algorithms with improved accuracy.
Zobrazit více v PubMed
Lindeman RL (1942) The trophic dynamic aspect of ecology. Ecology 23: 399–418.
Field CB, Behrenfeld MJ, Randerson JT, Falkowski PG (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240. PubMed
Carr M-E, Friedrichs AM, Schmeltz M, Aita MN, Antoine D, et al. (2006) A comparison of global estimates of marine primary production from ocean color. Deep Sea Res II 533: 741770 doi:10.1016/j.dsr2.2006.01.028 DOI
Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17: 1245–1271.
Behrenfeld MJ, Boss E, Siegel DA, Shea DM (2005) Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem Cycles 19: GB1006 doi:10.1029/2004GB002299 DOI
Schreiber U, Neubauer C, Schuwa U (1993) PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: A highly sensitive new tool in basic and applied photosynthesis research. Photosynth Res 36: 65–72. PubMed
Oxborough K, Moore MC, Suggett D, Lawson T, Chan HG, et al. (2012) Direct estimation of functional PSII reaction centre concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data. Limnol Oceanogr Meth 10: 142–154.
Suggett DJ, Moore M, Geider RJ (2011) Estimating aquatic productivity from active fluorescence measurements. In: Suggett DJ, Prášil O, Borowitzka MA, editors. Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer Dordrecht. pp. 103–127.
Falkowski PG, Kolber ZS (1995) Variations in Chlorophyll Fluorescence Yields in Phytoplankton in the World Oceans. Austr J Plant Physiol 22: 341–355.
Moore MC, Suggett DJ, Holligan PM, Sharples J, Abrahams ER (2003) Physical controls on phytoplankton physiology at a shelf front: a fast repetition-rate fluorometer based field study. Mar Ecol Prog Ser 259: 29–45.
Moore MC, Suggett DJ, Hickman AE, Kim Y-N, Tweddle JF, et al. (2006) Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea. Limnol. Oceanogr. 5: 936–949.
Behrenfeld MJ, Kolber ZS (1999) Widespread iron limitation of phytoplankton in the South Pacific Ocean. Science 283: 840–843. PubMed
MacIntyre HL, Cullen JJ (2005) Using cultures to investigate the physiological ecology of microalgae. In: Andersen RA, editor. Algal culturing techniques. Elsevier Academic Press, New York. pp. 287–236.
Venrick EL, Beers, JR, Heinbokel JF (1977) Possible consequences of containing microplankton for physiological rate measurements. J Experimental Mar Biol Ecol 26: 55–76.
Fogg GE, Calvario-Martinez O (1989) Effects of bottle size in determinations of primary productivity by phytoplankton. Hydrobiologia 173: 89–94.
Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87–92.
Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37: 89–102. PubMed
Suggett DJ, MacIntyre HL, Kana TM, Geider RJ (2009) Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton. Aquatic Microbial Ecol 56: 147–162.
Halsey KH, Milligan AJ, Behrenfeld MJ (2010) Physiological optimization underlies growth rate-dependent chlorophyll-specific gross and net primary production. Photosynth Res 103: 125–137. PubMed
Halsey KH, Milligan AJ, Behrenfeld MJ (2011) Linking time-dependent carbon-fixation efficiencies in Dunaliella tertiolecta (Chlorophyceae) to underlying metabolic pathways. J Phycol 47: 66–76. PubMed
Boyd PW, Aiken J, Kolber ZS (1997) Comparisons of radiocarbon and fluorescence based (pump and probe) measurements of phytoplankton photosynthetic characteristics in the Northeast Atlantic Ocean. Mar Ecol Prog Ser 149: 215–226.
Corno G, Letelier RM, Abbott MR, Karl DA (2006) Assessing primary production variability in the north Pacific subtropical gyre: a comparison of fast repetition rate fluorometry and 14C measurements. J Phycol 42: 51–60.
Kromkamp JC, Dijkman NA, Peene J, Simis SGH, Gons HJ (2008) Estimating phytoplankton primary production in Lake Ijsselmeer (The Netherlands) using variable fluorescence (PAM-FRRF) and 14C-uptake techniques. Eur J Phycol 43: 327–344.
Suggett DJ (2000) Variability of phytoplankton productivity rates in the Atlantic Oceans observed using the Fast Repetition Rate fluorometer. University of Southampton, United Kingdom, Doctoral Thesis, 184 pp.
Suggett DJ, Moore MC, Marañón E, Omachi C, Varela RA, et al. (2006) Photosynthetic electron turnover in the tropical and subtropical Atlantic Ocean. Deep Sea Res II 53: 1573–1592.
Hickman (2007) The photophysiology and primary productivity of phytoplankton within the deep chlorophyll maximum. University of Southampton, School of Ocean and Earth Sciences, Doctoral Thesis, 237pp.
Pemberton KL, Clarke R, Joint I (2006) Quantifying uncertainties associated with the measurement of primary production. Mar Ecol Prog Ser 322: 51–59.
Smyth TJ, Pemberton KL, Aiken J, Geider RJ (2004) A methodology to determine primary production and phytoplankton photosynthetic parameters from fast repetition rate fluorometry. Journal of Plankton Research 26: 1337–1350.
Raateoja N, Seppälä J, Kuosa H (2004) Bio-optical modelling of primary production in the SW Finnish coastal zone, Baltic Sea: fast repetition rate fluorometry in Case 2 waters. Mar Ecol Prog Ser 267: 9–26.
Melrose DC, Oviatt CA, O'Reilly JE, Berman MS (2006) Comparisons of fast repetition rate fluorescence estimated primary production and 14C uptake by phytoplankton. Mar Ecol Prog Ser 311: 37–46.
Tripathy SC, Ishizaka J, Fujiki T, Shibata T, Okamura K, et al. (2010) Assessment of carbon- and fluorescence-based primary productivity in Ariake Bay, southwestern Japan. Estuarine Coastal Shelf Sc 87: 163–173.
Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Phil Trans R Soc Lond D 355: 1433–1446. PubMed PMC
Bailey S, Mehlis A, Mackey KRM, Cardol P, Finazi G, et al. (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus . Biochim Biophys Acta 1777: 269–276. PubMed
Mackey KRM, Paytan A, Grossman AR, Bailey S (2008) A photosynthetic strategy for coping in a high-light, low-nutrient environment. Limnol Oceanogr 53: 900–913.
Holmes JJ, Weger HG, Turpin DH (1989) Chlorophyll a fluorescence predicts total phytosynthetic electron flow to CO2 or NO3 −/NO2 − under transient conditions. Plant Physiol 91: 331–337. PubMed PMC
Estévez-Blanco P, Cermeño P, Espiñeira M, Fernández E (2006) Phytoplankton photosynthetic efficiency and primary production rates estimated from fast repetition rate fluorometry at coastal embayments affected by upwelling (Rías Baixas, NW of Spain). J Plankton Res 28: 1153–1165.
Behrenfeld MJ, Prášil O, Babin M, Bruyant F (2004) In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J Phycol 40: 4–25.
Suggett DJ, Moore MC, Hickman AE, Geider RJ (2009) Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state. Mar Ecol Prog Ser 376: 1–19.
Kirk JTO (2010) Light and photosynthesis in aquatic ecosystems, 3rd edition. Cambridge: Cambridge University Press. 662 p.
Suggett DJ, Kraay,G, Holligan P, Davey M, Aiken J, et al. (2001) Assessment of photosynthesis in a spring cyanobacterial bloom by use of a fast repetition rate fluorometer. Limnol Oceanogr 46: 802–810.
Kolber ZS, Prášil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367: 88–106. PubMed
Suggett DJ, Oxborough K, Baker NR, MacIntyre HL, Kana TM, et al. (2003) Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. Eur J Phycol 38: 371–384.
Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover protocols and suggested terminology. Eur J Phycol 38: 103–112.
Suggett DJ, Maberly SC, Geider RJ (2006) Gross photosynthesis and lake community metabolism during the spring phytoplankton bloom. Limnol Oceanogr 51: 2064–2076.
Cullen JJ, Davis RF (2003) The blank can make a big difference in oceanographic measurements. Limnol Oceangr Bull 12: 29–35.
Suggett DJ, MacIntyre HL, Geider RJ (2004) Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnol Oceanogr Meth 2: 316–332.
Kolber ZS, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ . Limnol Oceangr 38: 1646–1665.
Ting CS, Owens G (1994) The effects of excess irradiance on photosynthesis in the marine diatom Phaeodactylum tricornutum . Plant Physiol 106: 763–770. PubMed PMC
Laney SR, Letelier RM, Desiderio RA, Abbott MR, Kiefer DA, et al. (2001) Measuring the natural fluorescence of phytoplankton cultures. J Atmos Ocean Technol 18: 1924–34.
Milligan AJ, Aparicio UA, Behrenfeld MJ (2011) Fluorescence and nonphotochemical quenching responses to simulate vertical mixing in the marine diatom Thalassiosira weissflogii . Mar Ecol Prog Ser 448: 67–78.
Lewis MR, Smith JC (1983) A Small Volume, Short-Incubation-Time Method for Measurement of Photosynthesis As A Function of Incident Irradiance. Mar Ecol Prog Ser 13: 99–102.
MacIntrye HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38: 17–38.
Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J Exp Mar Biol Ecol 366: 56–69.
Baker NR, Oxborough K (2004) Chlorophyll fluorescence as a probe of photosynthetic productivity. In: Papageorgiou GC, Govindjee, editors. Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht. pp. 65–85.
Williams PJ le B, Robinson C, Søndergaard M, Jespersen A-M, Bentley TL, et al. (1996) Algal 14C and total carbon metabolism. 2. Experimental observations with the diatom Skeletonema costatum . J Plankton Res 18: 1961–1974.
Laws EA (1991) Photosynthetic quotients, new production and net community production in the open ocean. Deep Sea Res 30: 143–167.
Falkowski PG, Owens TG (1980) Light-shade adaption - two strategies in marine phytoplankton. Plant 66: 592–595. PubMed PMC
Dubinsky Z, Falkowski PG, Wyman K (1986) Light harvesting and utilization by phytoplankton. Plant Cell Physiol 27: 1335–1349.
Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of photosystem I and II in microalge. Plant Physiol 110: 689–696. PubMed PMC
Kromkamp J, Limbeek M (1993) Effect of short-term variation in irradiance on light-harvesting and photosynthesis of the marine diatom Skeletonema costatum: a laboratory study simulating vertical mixing. J General Microbiol 139: 2277–2284.
Serôdio J, Vieira S, Cruz S, Coelho H (2006) Microphytobenthos vertical migratory photoresponse as characterized by light response curces. Photosynth Res 90: 29–43. PubMed
Sunda WG, Huntsman SA (1995) Photosynthetic architecture differs in oceanic and coastal phytoplankton. Mar Chem 50: 189–206.
Scanlan DJ (2003) Physiological diversity and niche adaptation in marine Synechococcus . Adv Microb Physiol 47: 1–64. PubMed
Strzepek RF, Harrison PJ (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431: 689–692. PubMed
Cardol P, Bailleul B, Rappaport F, Derelle E, Beal D, et al. (2008) An original adaptation of photosynthesis in the marine green alga Ostreococcus . Proc Natl Acad Sci USA 105: 7881–7886. PubMed PMC
Bibby TS, Zhang Y, Chen M (2009) Biogeography of photosynthetic light-harvesting genes in marine phytoplankton. PloS ONE. 4: e4601. PubMed PMC
Grossman AR, Mackey KRM, Bailey S (2010) A perspective on photosynthesis in the oligotrophic oeans: hypotheses concerning alternate routes of electron flow. J Phycol 46: 629–634.
Behrenfeld MJ, Worthington K, Sherrell RM, Chavez FP, Strutton P, et al. (2006) Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature 442: 1025–1028. PubMed
Behrenfeld MJ, Halsey KH, Milligan AJ (2008) Evolved physiological responses of phytoplankton to their integrated growth environment. Phil Trans R Soc Lond B 363: 2687–2703. PubMed PMC
Liu S-W, B-S Qiu (2012) Different responses of photosynthesis and flow cytometric signals to iron limitation and nitrogen source in coastal and oceanic Synechococcus strains (Cyanophyceae). Mar Biol 159: 519–532.
Masojídek J, Grobbelaar JU, Pechar L, Kobližek M (2001) Photosystem II electron transport and oxygen production in natural waterblooms of freshwater cyanobacteria during a diel cycle. J Plankton Res 23: 57–66.
Wagner H, Jakob T, Wilhelm C (2006) Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol 169: 95–108. PubMed
Tamminen T, Andersen T (2007) Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. Mar Ecol Prog Ser 340: 121–138.
Lessin G, Lips I, Raudsepp U (2007) Modelling nitrogen and phosphorus limitation on phytoplankton growth in Narva Bay, south-eastern Gulf of Finland. Oceanologia 49: 259–276.
van Beusekom JJE, Mengedoht D, Augusting CB, Schilling M, Boersma M (2009) Phytoplankton, protozooplankton and nutrient dynamics in the Bornholm Basin (Baltic Sea) in 2002–2003 during the German GLOBEC Project. Int J Earth Sci 98: 251–260.
Flameling IA, Kromkamp J (1984) Responses of respiration and photosynthesis of Scenedesmus protuberans Fritsch to gradual and steep salinity increases. J Plankton Res 16: 1781–1791.
Li WKW, Harrison WG, Head EJH (2006) Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc Royal Soc B Biol Sci 273(1596): 1953–1960. PubMed PMC
Wu Y, Peterson IK, Tang CCL, Platt T, Sathyendranath S, et al. (2007) The impact of sea ice on the initiation of the spring bloom on the Newfoundland and Labrador Shelves. J Plankton Res 29: 509–514.
Wu Y, Platt T, Tang CCL, Sathyendranath S (2008) Regional differences in the timing of the spring bloom in the Labrador Sea. Mar Ecol Prog Ser 355: 9–20.
Zhai L, Platt T, Tang C, Sathyendranath S, Walls RH (2011) Phytoplankton phenology on the Scotian Shelf. ICES J Mar Sci 68: 781–791.
Napoléon C, Claquin P (2012) Multi-parametric relationships between PAM measurements and carbon incorporation, an in situ approach. PLoS ONE 7: e40284. PubMed PMC
Longhurst AR (1998) Ecological geography of the sea. Academic Press, 398 p.
Bonnet S, Guieu C, Bruyant F, Prasil O, Van Wambeke F, et al. (2008) Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise). Biogeosciences 5: 215–225.
Greene RM, Geider RJ, Falkowski PG (1991) Effect of iron limitation on photosynthesis in a marine diatom. Limnol Oceanogr 36: 1772–1782.
Greene RM, Geider RJ, Kolber Z, Falkowski PG (1992) Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol 100: 565–575. PubMed PMC
Geider RJ, LaRoche J, Greene RM, Olaizola M (1993) Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. J Phycol 29: 755–766.
Schrader PS, Milligan AJ, Behrenfeld MJ (2011) Surplus photosynthetic antennae complexes underlie diagnostics of iron limitation in a cyanobacterium. PLoS ONE 6: e18753. PubMed PMC
Ryan-Keogh TJ, Macey AI, Cackshutt AM, Moore MC, Bibby TS (2012) The cyanobacterial chlorophyll-binding-protein IsiA Acts to increase the in vivo effective absorption cross section of PSI under iron limitation. J Phycol 48: 145–154. PubMed
Levitan O, Rosenberg G, Setlik I, Setlokova E, Grigel J, et al. (2007) Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium . Global Change Biol 13: 531–538.
Levitan O, Kranz SA, Spungin D, Prášil O, Rost B, et al. (2010) Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: A mechanistic view. Plant Physiol 154: 346–356. PubMed PMC
Photosynthetic Activity Measured In Situ in Microalgae Cultures Grown in Pilot-Scale Raceway Ponds