Characterization of Zn-Mg-Sr Type Soldering Alloy and Study of Ultrasonic Soldering of SiC Ceramics and Cu-SiC Composite

. 2023 May 17 ; 16 (10) : . [epub] 20230517

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37241421

Grantová podpora
APVV 21-0054 Slovak Research and Development Agency
APVV-17-0025 Slovak Research and Development Agency
VEGA 1/0303/20 VEGA
VEGA 1/0531/22 VEGA
VEGA 1/0026/23 VEGA

The aim of the research was to characterize the soldering alloy type Zn-Mg-Sr and direct the soldering of SiC ceramics with Cu-SiC-based composite. It was investigated whether the proposed composition of the soldering alloy was appropriate for soldering those materials at the defined conditions. For the determination of the solder melting point, TG/DTA analysis was applied. The Zn-Mg system is of the eutectic type with a reaction temperature of 364 °C. The effect of strontium on the phase transformation was minimal, owing to its lower content. The microstructure of the soldering alloy type Zn3Mg1.5Sr is formed of a very fine eutectic matrix containing segregated phases of strontium-SrZn13 and magnesium-MgZn2 and Mg2Zn11. The average tensile strength of the solder is 98.6 MPa. The tensile strength was partially increased by solder alloying with magnesium and strontium. The SiC/solder joint was formed due to the distribution of magnesium from the solder to the boundary with the ceramics at the formation of a phase. Owing to soldering in air, oxidation of the magnesium took place and the oxides formed were combined with the silicon oxides that remained on the surface of the ceramic material-SiC. Thus, a strong bond based on oxygen was obtained. An interaction between the liquid zinc solder and the copper matrix of the composite substrate took place at the formation of a new phase-γCu (Cu5Zn8). The shear strength was measured on several ceramic materials. The average shear strength of the combined SiC/Cu-SiC joint fabricated with Zn3Mg1.5Sr solder was 62 MPa. When soldering similar ceramic materials mutually, a shear strength of as much as around 100 MPa was observed.

Zobrazit více v PubMed

Tu K.N., Gusak A.M., Li M. Physics and materials challenges for lead-free solders. J. Appl. Phys. 2003;93:1335–1353. doi: 10.1063/1.1517165. DOI

Menon S., George E., Osterman M., Pecht M. High lead solder (over 85%) solder in the electronics industry: RoHS exemptions and alternatives. J. Mater. Sci. Mater. Electron. 2015;26:4021–4030. doi: 10.1007/s10854-015-2940-4. DOI

European Commission . Recast of the WEEE and RoHS Directives Proposed. European Commission; Brussels, Belgium: Aug 13, 2012.

Rashid M.H. Power Electronics Handbook. 4th ed. Butterworth-Heinemann; Portsmouth, NH, USA: 2018.

Chidambaram V., Hald J., Hattel J. Development of Au–Ge based candidate alloys as an alternative to high-lead content solders. J. Alloys Compd. 2010;490:170–179. doi: 10.1016/j.jallcom.2009.10.108. DOI

Chidambaram V., Hattel J., Hald J. Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system. Mater. Des. 2010;31:4638–4645. doi: 10.1016/j.matdes.2010.05.035. DOI

Shi Y., Fang W., Xia Z., Lei Y., Guo F., Li X. Investigation of rare earth-doped BiAg high-temperature solders. J. Mater. Sci. Mater. Electron. 2010;21:875–881. doi: 10.1007/s10854-009-0010-5. DOI

Song J.M., Chuang H.Y., Wen T.X. Thermal and tensile properties of Bi–Ag alloys. Metall. Mater. Trans. A. 2007;38:1371–1375. doi: 10.1007/s11661-007-9138-1. DOI

Zhao S.Y., Li X., Mei Y.H., Lu G.Q. Study on high temperature bonding reliability of sintered nano-silver joint on bare copper plate. Microelectron. Reliab. 2015;55:2524–2531. doi: 10.1016/j.microrel.2015.10.017. DOI

Sharif A., Gan C.L., Chen Z. Transient liquid phase Ag-based solder technology for high-temperature packaging applications. J. Alloys Compd. 2014;587:365–368. doi: 10.1016/j.jallcom.2013.10.204. DOI

Kang N., Na H.S., Kim S.J., Kang C.Y. Alloy design of Zn–Al–Cu solder for ultra high temperatures. J. Alloys Compd. 2009;467:246–250. doi: 10.1016/j.jallcom.2007.12.048. DOI

Rettenmayr M., Lambracht P., Kempf B., Tschudin C. Zn–Al based alloys as Pb-free solders for die attach. J. Electron. Mater. 2002;31:278–285. doi: 10.1007/s11664-002-0144-1. DOI

Li H.Y., Li Z.G., Liu Y., Jiang H.F. Effect of zirconium on the microstructure and mechanical properties of Zn–4% Al hypoeutectic alloy. J. Alloys Compd. 2014;592:127–134. doi: 10.1016/j.jallcom.2013.12.133. DOI

Panaghie C., Cimpoeșu R., Zegan G., Roman A.-M., Ivanescu M.C., Aelenei A.A., Benchea M., Cimpoeșu N., Ioanid N. In Vitro Corrosion Behavior of Zn3Mg0.7Y Biodegradable Alloy in Simulated Body Fluid (SBF) Appl. Sci. 2022;12:2727. doi: 10.3390/app12052727. DOI

Istrate B., Munteanu C., Antoniac I.-V., Lupescu Ș.-C. Current Research Studies of Mg–Ca–Zn Biodegradable Alloys Used as Orthopedic Implants—Review. Crystals. 2022;12:1468. doi: 10.3390/cryst12101468. DOI

Koleňák R., Kostolný I., Sahul M. Direct bonding of silicon with solders type Sn-Ag-Ti. Solder. Surf. Mt. Technol. 2016;28:149–158. doi: 10.1108/SSMT-11-2015-0040. DOI

Koleňák R., Kostolný I., Drápala J., Sahul M., Urminský J. Characterizing the Soldering Alloy Type In–Ag–Ti and the Study of Direct Soldering of SiC Ceramics and Copper. Metals. 2018;8:274. doi: 10.3390/met8040274. DOI

Koleňák R., Kostolný I., Drápala J., Babincová P., Zacková P., Gogola P. Characterization of Soldering Alloy Type Bi-Ag-Ti and the Study of Ultrasonic Soldering of Silicon and Copper. Metals. 2021;11:624. doi: 10.3390/met11040624. DOI

Xiao Y., Li M.Y., Wang L., Huang S.Y., Du X.M., Liu Z.Q. Interfacial reaction behavior and mechanical properties of ultrasonically brazed Cu/Zn–Al/Cu joints. Mater. Des. 2015;73:42–49. doi: 10.1016/j.matdes.2015.02.016. DOI

Xiao Y., Ji H.J., Li M.Y., Kim J. Ultrasound-assisted brazing of Cu/Al dissimilar metals using a Zn–3Al filler metal. Mater. Des. 2013;52:740–747. doi: 10.1016/j.matdes.2013.06.016. DOI

Guo W.B., Luan T.M., He J.S., Yan J.C. Ultrasonic-assisted soldering of fine-grained 7034 aluminum alloys using ZnAl filler metals. Mater. Des. 2017;125:85–93. doi: 10.1016/j.matdes.2017.03.073. DOI

Chen X., Yan J., Ren S., Wang Q., Wei J., Fan G. Microstructure, mechanical properties, and bonding mechanism of ultrasonic-assisted brazed joints of SiC ceramics with ZnAlMg filler metals in air. Ceram. Int. 2014;40:683–689. doi: 10.1016/j.ceramint.2013.06.055. DOI

Li Z., Xu Z., Peng L., Yan J. Ultrafast ultrasonic-assisted transient liquid bonding Al/Mg in air. Mat. Char. 2022;190:111987. doi: 10.1016/j.matchar.2022.111987. DOI

Kolenak R., Kostolny I., Drapala J., Drienovsky M., Sahul M. Research on joining metal-ceramics composite Al/Al2O3 with Cu substrate using solder type Zn–In–Mg. J. Compos. Mater. 2019;53:1411–1422. doi: 10.1177/0021998319835304. DOI

Kolenak R., Melus T., Drapala J., Gogola P., Pasak M. Study of Bond Formation in Ceramic and Composite Materials Ultrasonically Soldered with Bi-Ag-Mg-Type Solder. Materials. 2023;16:2991. doi: 10.3390/ma16082991. PubMed DOI PMC

Massalski T.B. Binary Alloy Phase Diagrams. ASM; Metals Park, OH, USA: 1996.

Liang P., Seifert H.J., Lukas H.L., Ghosh G., Effenberg G., Aldinger F. Thermodynamic modelling of the Cu-Mg-Zn ternary system. Calphad. 1998;22:527–544. doi: 10.1016/S0364-5916(99)00009-7. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...