Study of Bond Formation in Ceramic and Composite Materials Ultrasonically Soldered with Bi-Ag-Mg-Type Solder
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37109827
PubMed Central
PMC10145391
DOI
10.3390/ma16082991
PII: ma16082991
Knihovny.cz E-zdroje
- Klíčová slova
- Al2O3 ceramic, Bi solder, Ni–SiC substrate, soldering, ultrasonic soldering,
- Publikační typ
- časopisecké články MeSH
This research aimed to study a Bi-Ag-Mg soldering alloy and the direct soldering of Al2O3 ceramics and Ni-SiC composites. Bi11Ag1Mg solder has a broad melting interval, which mainly depends on the silver and magnesium content. The solder starts to melt at a temperature of 264 °C. Full fusion terminates at a temperature of 380 °C. The microstructure of the solder is formed by a bismuth matrix. The matrix contains segregated silver crystals and an Ag (Mg, Bi) phase. The average tensile strength of solder is 26.7 MPa. The boundary of the Al2O3/Bi11Ag1Mg joint is formed by the reaction of magnesium, which segregates in the vicinity of a boundary with a ceramic substrate. The thickness of the high-Mg reaction layer at the interface with the ceramic material was approximately 2 μm. The bond at the boundary of the Bi11Ag1Mg/Ni-SiC joint was formed due to the high silver content. At the boundary, there were also high contents of Bi and Ni, which suggests that there is a NiBi3 phase. The average shear strength of the combined Al2O3/Ni-SiC joint with Bi11Ag1Mg solder is 27 MPa.
Zobrazit více v PubMed
Mittal A. Energy efficiency enabled by power electronics; Proceedings of the 2010 International Electron Devices Meeting; San Francisco, CA, USA. 6–8 December 2010; pp. 1.2.1–1.2.7. DOI
Kwon T.-S., Song J.-H., Lee J.-B., Paek S.-H., Yong S.-I. A new smart power module for low power motor drives; Proceedings of the 2007 7th Internatonal Conference on Power Electronics; Daegu, Republic of Korea. 22–26 October 2007; pp. 695–699. DOI
Pfeiffer U.R., Grzyb J., Liu D., Gaucher B., Beukema T., Floyd B., Reynolds S. A chip-scale packaging technology for 60-GHz wireless chipsets. IEEE Trans. Microw. Theory Tech. 2006;54:3387–3397. doi: 10.1109/TMTT.2006.877832. DOI
Saito H., Nakajima M., Okamoto T., Yamada Y., Ohuchi A., Iguchi N., Sakamoto T., Yamaguchi K., Mizuno M. A chip-stacked memory for on-chip SRAM-Rich SoCs and processors. IEEE J. Solid-State Circuits. 2010;45:15–22. doi: 10.1109/JSSC.2009.2034078. DOI
Miettinen J., Mantysalo M., Kaija K., Ristolainen E.O. System design issues for 3D system-in-package (SiP); Proceedings of the 54th Electronic Components and Technology Conference (IEEE Cat. No.04CH37546); Las Vegas, NV, USA. 4 June 2004; pp. 610–615. DOI
Lietaer N., Taklo M., Schjolberg-Henriksen K., Ramm P. 3D interconnect technologies for advanced MEMS/NEMS applications. Electrochem. Soc. Trans. 2010;25:87–95. doi: 10.1149/1.3390661. DOI
Goto M., Hagiwara K., Iguchi Y., Ohtake H., Saraya T., Toshiyoshi H., Hiramoto T. A novel MOSFET with vertical signal-transfer capability for 3D-structured CMOS image sensors. IEEJ Trans. Electr. Electron. Eng. 2014;9:329–333. doi: 10.1002/tee.21974. DOI
Vempati S.R., Su N., Khong C.H., Lim Y.Y., Vaidyanathan K., Lau J.H., Liew B.P., Au K.Y., Tanary S., Fenner A., et al. Development of 3-D silicon die stacked package using flip chip technology with micro bump interconnects; Proceedings of the 2009 59th Electronic Components and Technology Conference; San Diego, CA, USA. 26–29 May 2009; pp. 980–987. DOI
Bai J., Zhang Z., Calata J.N., Lu G.-Q. Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag. Technol. 2006;29:589–593. doi: 10.1109/TCAPT.2005.853167. DOI
Frear D.R., Jang J.W., Lin J.K., Zhang C. Pb-free solders for flip-chip interconnects. JOM. 2001;53:28–33. doi: 10.1007/s11837-001-0099-3. DOI
Otiaba K.C., Bhatti R.S., Ekere N.N., Mallik S., Ekpu M. Finite element analysis of the effect of silver content for Sn–Ag–Cu alloy compositions on thermal cycling reliability of solder die attach. Eng. Fail. Anal. 2013;28:192–207. doi: 10.1016/j.engfailanal.2012.10.008. DOI
Zürcher J., Yu K., Schlottig G., Baum M., Taklo M.M.V., Wunderle B., Warszynski P., Brunschwiler T. Nanoparticle assembly and sintering towards all-copper flip chip interconnects; Proceedings of the 2015 IEEE 65th Electronic Components and Technology Conference (ECTC); San Diego, CA, USA. 26–29 May 2015; pp. 1115–1121. DOI
Kang U.-B., Kim Y.-H. A new COG technique using low temperature solder bumps for LCD driver IC packaging applications. IEEE Trans. Compon. Packag. Technol. 2004;27:253–258. doi: 10.1109/TCAPT.2004.828585. DOI
Mei Z., Holder H., Plas H.V. Hewlett-Packard. Hewlett-Packard J. 1996;48:91.
Suh M.-S., Park C.-J., Kwon H.-S. Effects of plating parameters on alloy composition and microstructure of Sn–Bi electrodeposits from methane sulphonate bath. Surf. Coat. Technol. 2006;200:3527–3532. doi: 10.1016/j.surfcoat.2004.08.162. DOI
Ren G., Wilding I.J., Collins M.N. Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections. J. Alloy. Compd. 2016;665:251–260. doi: 10.1016/j.jallcom.2016.01.006. DOI
Koleňák R., Kostolný I., Drápala J., Babincová P., Gogola P. Characterization of soldering alloy type Bi-Ag-Ti and the study of ultrasonic soldering of silicon and copper. Metals. 2021;11:624. doi: 10.3390/met11040624. DOI
Hashemi S., Ashrafi A. Characterisations of low phosphorus electroless Ni and composite electroless Ni-P-SiC coatings on A356 aluminium alloy. Trans. IMF. 2018;96:52–56. doi: 10.1080/00202967.2018.1403161. DOI
Ma C., Jiang M., Cui W., Xia F. Jet pulse electrodeposition and characterization of Ni-AlN nanocoatings in presence of ultrasound. Ceram. Int. 2018;44:5163–5170. doi: 10.1016/j.ceramint.2017.12.121. DOI
Kaushal S., Gupta D., Bhowmick H. On development and wear behavior of microwave-processed functionally graded Ni-SiC clads on SS-304 substrate. J. Mater. Eng. Perform. 2018;27:777–786. doi: 10.1007/s11665-017-3110-z. DOI
Mousavi R., Bahrolooom M., Deflorian F. Preparation, corrosion, and wear resistance of Ni-Mo/Al composite coating reinforced with Al particles. Mater. Des. 2016;110:456–465. doi: 10.1016/j.matdes.2016.08.019. DOI
Sun C., Liu X., Zhou C., Wang C., Cao H. Preparation and wear properties of magnetic assisted pulse electrodeposited Ni-SiC nanocoatings. Ceram. Int. 2019;45:1348–1355. doi: 10.1016/j.ceramint.2018.07.242. DOI
Qu W., Zhou S., Zhuang H. Effect of Ti content and Y additions on oxidation behavior of SnAgTi solder and its application on dissimilar metals soldering. Mater. Des. 2015;88:737–742. doi: 10.1016/j.matdes.2015.09.097. DOI
Koleňák R., Kostolný I., Drapála J., Kusý M., Pašák M. Research on soldering AlN ceramics with Cu substrate using Sn-Ag-Ti solder. Solder. Surf. Mt. Technol. 2019;31:93–101. doi: 10.1108/SSMT-10-2018-0039. DOI
Yu W.-Y., Liu S.-H., Liu X.-Y., Liu M.-P., Shi W.-G. Interface reaction in ultrasonic vibration-assisted brazing of aluminum to graphite using Sn–Ag–Ti solder foil. J. Mater. Process. Technol. 2015;221:285–290. doi: 10.1016/j.jmatprotec.2015.02.028. DOI
Feng K.Y., Mu D.K., Liao X.J., Huang H., Xu X.P. Brazing sapphire/sapphire and sapphire/copper sandwich joints using Sn-Ag-Ti active solder alloy. Solid State Phenom. 2018;273:187–193. doi: 10.4028/www.scientific.net/SSP.273.187. DOI
Yu W., Liu Y., Liu X. Spreading of Sn-Ag-Ti and Sn-Ag-Ti(-Al) solder droplets on the surface of porous graphite through ultrasonic vibration. Mater. Des. 2018;150:9–16. doi: 10.1016/j.matdes.2018.04.028. DOI
Koleňák R., Kostolný I., Drápala J., Sahul M., Urminský J. Characterizing the soldering alloy type In-Ag-Ti and the study of direct soldering of SiC ceramics and copper. Metals. 2018;8:274. doi: 10.3390/met8040274. DOI
Koleňák R., Kostolný I., Sahul M. Direct bonding of silicon with solders type Sn-Ag-Ti. Solder. Surf. Mt. Technol. 2016;28:149–158. doi: 10.1108/SSMT-11-2015-0040. DOI
Koleňák R., Hodúlová E. Study of direct soldering of Al2O3 ceramics and Cu substrate by use of Bi11Ag2La solder. Weld. World. 2018;62:415–426. doi: 10.1007/s40194-017-0538-6. DOI
Song J.-M., Chuang H.-Y., Wu Z.-M. Substrate Dissolution and Shear Properties of the Joints between Bi-Ag Alloys and Cu Substrates for High-Temperature Soldering Applications. J. Electron. Mater. 2007;36:1516–1523. doi: 10.1007/s11664-007-0222-5. DOI
Song J.-M., Chuang H.-Y., Wen T.-X. Thermal and Tensile Properties of Bi-Ag Alloys. Met. Mater. Trans. A. 2007;38:1371–1375. doi: 10.1007/s11661-007-9138-1. DOI
Lalena J.N., Dean N.F., Weiser M.W. Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment. J. Electron. Mater. 2002;31:1244–1249. doi: 10.1007/s11664-002-0016-8. DOI
Yin L., Li D., Yao Z., Wang G., Das D., Pecht M. Effects of Sn addition on the microstructure and properties of Bi–11Ag high-temperature solder. J. Mater. Sci. Mater. Electron. 2018;29:12028–12035. doi: 10.1007/s10854-018-9308-5. DOI
Elliott R.P., Shunk F.A. ASM Handbook. Volume 3. ASM International; Materials Park, OH, USA: 1980. Alloy Phase Diagrams: Ag-Bi phase diagram [online]
Nayeb-Hashemi A.A., Clark J.B. The Bi-Mg (bismuth-magnesium) system. Bull. Alloy. Phase Diagrams. 1986;6:528–533. doi: 10.1007/BF02887150. DOI
Nayeb-Hashemi A.A., Clark J.B. ASM Handbook. Volume 3. ASM International; Materials Park, OH, USA: 1988. Alloy Phase Diagrams: Ag-Mg phase diagram [online]
Massalski T.B., editor. Binary Alloy Phase Diagrams. Volume 3 ASM International; Materials Park, OH, USA: 1990.
Gandova V., Vassilev G. Comparative analyses of thermodynamic properties assessments, performed by geometric models: Application to the Ni-Bi-Zn system. J. Min. Met. Sect. B Met. 2013;49:347–352. doi: 10.2298/JMMB120829035G. DOI