Photosynthetic Activity Measured In Situ in Microalgae Cultures Grown in Pilot-Scale Raceway Ponds
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
727874
EU Horizon 2020 Research and Innovation program, project SABANA
887227
EU Horizon 2020 Research and Innovation program, project MULTI-STR3AM
TED2021-131555B-C22
Ministry of Science and Innovation of the Spanish government, Alga Hub Project "Algae for More Sustainable and Healthy Functional Foods
PubMed
39683169
PubMed Central
PMC11644081
DOI
10.3390/plants13233376
PII: plants13233376
Knihovny.cz E-zdroje
- Klíčová slova
- RWP, Scenedesmus, chlorophyll (Chl) fluorescence, electron transport, green microalgae, non-photochemical dissipation, oxygen production, photic layer, photosynthesis,
- Publikační typ
- časopisecké články MeSH
The microalga Scenedesmus sp. (Chlorophyceae) was cultured in a raceway pond (RWP) placed in a greenhouse. The objective of this case study was to monitor the photosynthesis performance and selected physicochemical variables (irradiance, temperature, dissolved oxygen concentration) of microalgae cultures in situ at various depths of RWP. The data of actual photochemical yield Y(II), the electron transport rate monitored by in vivo chlorophyll fluorescence and photosynthetic oxygen production both in situ and ex situ revealed that (i) even in diluted cultures (0.6 g DW L-1), the active photic layer in the culture was only about 1 cm, indicating that most of the culture was "photosynthetically" inactive; (ii) the mechanism of non-photochemical quenching may not be fast enough to respond once the cells move from the surface to the deeper layers; and (iii) even when cells were exposed to a high dissolved oxygen concentration of about 200% sat and higher, the cultures retained a relatively high Y(II) > 0.35 when monitored in situ. The presented work can be used as exemplary data to optimize the growth regime of microalgae cultures in large-scale RWPs by understanding the interplay between photosynthetic activity, culture depth and cell concentration.
BIORIZON BIOTECH Parque Científico Tecnológico de Almería 04120 Almería Spain
CNR Institute of Bioeconomy 50019 Sesto Fiorentino FI Italy
Department of Chemical Engineering University of Almería 04001 Almería Spain
Faculty of Science University of South Bohemia 37001 České Budějovice Czech Republic
Institute of Blue Biotechnology and Development Málaga University 29004 Málaga Spain
Spanish Bank of Algae Universidad de Las Palmas de Gran Canaria 35001 Las Palmas Spain
Zobrazit více v PubMed
Acién F.G., Molina E., Reis A., Torzillo G., Zittelli G.C., Sepúlveda C., Masojídek J. Photobioreactors for the production of microalgae. In: Gonzalez-Fernandez C., Munoz R., editors. Microalgae-Based Biofuels Bioprod. From Feedstock Cultivation to End-Products. Woodhead Publishing; Duxford, UK: 2017. pp. 1–44. DOI
Masojídek J., Lhotský R., Štěrbová K., Zittelli G.C., Torzillo G. Solar bioreactors used for the industrial production of microalgae. Appl. Microbiol. Biotechnol. 2023;107:6439–6458. doi: 10.1007/s00253-023-12733-8. PubMed DOI
Golueke C.G., Oswald W.J. Biological conversion of light energy to the chemical energy of methane. Appl. Microbiol. 1959;7:219–227. doi: 10.1128/am.7.4.219-227.1959. PubMed DOI PMC
Oswald W.J., Golueke C.G. Eutrophication trends in the United States—A problem. J. Water Pollut. Control. Fed. 1966;38:964–975.
Dodd J.C. Elements of pond design and construction. In: Richmond A., editor. Handbook of Microalgal Mass Culture. 1st ed. CRC Press Inc.; Boca Raton, FL, USA: 1986. pp. 265–283.
Chiaramonti D., Prussi M., Casini D., Tredici M.R., Rodolfi L., Bassi N., Zittelli G.C., Bondioli P. Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Appl. Energy. 2013;102:101–111. doi: 10.1016/j.apenergy.2012.07.040. DOI
De Godos I., Mendoza J.L., Acién F.G., Molina E., Banks C.J., Heaven S., Rogalla F. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour. Technol. 2014;153:307–314. doi: 10.1016/j.biortech.2013.11.087. PubMed DOI
Sompech K., Chisti Y., Srinophakun T. Design of raceway ponds for producing microalgae. Biofuels. 2012;3:387–397. doi: 10.4155/bfs.12.39. DOI
Hadiyanto H., Elmore S., van Gerven T., Stankiewicz A. Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chem. Eng. J. 2013;217:231–239. doi: 10.1016/j.cej.2012.12.015. DOI
Masojídek J., Gómez-Serrano C., Ranglová K., Cicchi B., Encinas Bogeat Á., Câmara Manoel J.A., Sanches Zurano A., Silva Benavides A.M., Barceló-Villalobos M., Robles Carnero V.A., et al. Photosynthesis monitoring in microalgae cultures grown on municipal wastewater as a nutrient source in large-scale outdoor bioreactors. Biology. 2022;11:1380. doi: 10.3390/biology11101380. PubMed DOI PMC
Qiang H., Richmond A. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J. Appl. Phycol. 1996;8:139–145. doi: 10.1007/BF02186317. DOI
Borowitzka M.A. Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka M.A., Beardall J., Raven J.A., editors. The Physiology of Microalgae. Springer; Dordrecht, The Netherlands: 2016. pp. 601–652.
Borowitzka M.A., Vonshak A. Scaling up microalgal cultures to commercial scale. Eur. J. Phycol. 2017;52:407–418. doi: 10.1080/09670262.2017.1365177. DOI
Torzillo G., Chini Zittelli G., Silva Benavides A.M., Ranglová K., Masojídek J. Culturing of microalgae for food applications. In: Lafarga T., Acién-Fernandez F.G., editors. Cultured Microalgae in the Food Industry. Current and Potential Applications. Academic Press; San Diego, CA, USA: 2021. pp. 1–41.
Torzillo G., Accolla P., Pinzani E., Masojídek J. In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. J. Appl. Phycol. 1996;8:283–291. doi: 10.1007/BF02178571. DOI
Torzillo G., Bernardini P., Masojídek J. On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effect on the productivity of outdoor cultures of Spirulina platensis (Cyanobacteria) J. Phycol. 1998;34:504–510. doi: 10.1046/j.1529-8817.1998.340504.x. DOI
Rearte T.A., Celis-Plá P.S.M., Neori A., Masojídek J., Torzillo G., Gómez-Serrano C., Silva Benavides A.M., Álvarez-Gómez F., Abdala-Díaz R.T., Ranglová K., et al. Photosynthetic performance of Chlorella vulgaris R117 mass culture is moderated by diurnal oxygen gradients in an outdoor thin layer cascade. Algal Res. 2021;54:102176. doi: 10.1016/j.algal.2020.102176. DOI
Masojídek J., Ranglová K., Rearte T.A., Celis Plá P.S.M., Torzillo G., Benavides A.M.S., Neori A., Gómez C., Álvarez-Gómez F., Lukeš M., et al. Changes in photosynthesis, growth and biomass composition in outdoor Chlorella g120 culture during the metabolic shift from heterotrophic to phototrophic cultivation regime. Algal Res. 2021;56:102303. doi: 10.1016/j.algal.2021.102303. DOI
Enríquez S., Borowitzka M.A. The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett D.J., Prášil O., Borowitzka M.A., editors. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Springer; Dordrecht, The Netherlands: 2010. pp. 187–208.
Vonshak A., Torzillo G., Accolla P., Tomaselli L. Light and oxygen stress in Spirulina platensis (Cyanobacteria) grown outdoors in tubular reactors. Physiol. Plant. 1996;97:175–179. doi: 10.1111/j.1399-3054.1996.tb00494.x. DOI
Havlik I., Lindner P., Scheper T., Reardon K.F. On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnol. 2013;31:406–414. doi: 10.1016/j.tibtech.2013.04.005. PubMed DOI
Malapascua J.R.F., Jerez C.G., Sergejevová M., Figueroa F.L., Masojídek J. Photosynthesis monitoring to optimize growth of microalgal mass cultures: Application of chlorophyll fluorescence techniques. Aquat. Biol. 2014;22:123–140. doi: 10.3354/ab00597. DOI
Masojídek J., Kopecký J., Giannelli L., Torzillo G. Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J. Ind. Microbiol. Biotechnol. 2011;38:307–317. doi: 10.1007/s10295-010-0774-x. PubMed DOI
Torzillo G., Faraloni C., Silva A.M., Kopecký J., Pilný J., Masojídek J. Photoacclimation of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown in outdoors photobioreactors and open ponds. Eur. J. Phycol. 2012;47:169–181. doi: 10.1080/09670262.2012.683202. DOI
Jerez C.G., Malapascua J.R., Sergejevová M., Masojídek J., Figueroa F.L. Chlorella fusca (Chlorophyta) grown in thin-layer cascades: Estimation of biomass productivity by in-vivo chlorophyll a fluorescence monitoring. Algal Res. 2016;17:21–30. doi: 10.1016/j.algal.2016.04.010. DOI
Masojídek J., Ranglová K., Lakatos G.E., Silva Benavides A.M., Torzillo G. Variables governing photosynthesis and growth in microalgae mass cultures. Processes. 2021;9:820. doi: 10.3390/pr9050820. DOI
Demmig-Adams B., Adams W.W. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992;43:599–626. doi: 10.1146/annurev.pp.43.060192.003123. DOI
Masojídek J., Torzillo G., Koblížek M., Kopecký J., Bernardini P., Sacchi A., Komenda J. Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: Changes in chlorophyll fluorescence quenching and the xanthophyll cycle. Planta. 1999;209:126–135. doi: 10.1007/s004250050614. PubMed DOI
Krause G.H., Jahns P. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: Characterization and function. In: Papageorgiou G.C., Govindjee, editor. Chlorophyll a Fluorescence. Springer; Dordrecht, The Netherlands: 2004. pp. 463–495.
Gilmore A.M., Shinkarev V.P., Hazlett T.L., Govindjee Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochemistry. 1998;37:13582–13593. doi: 10.1021/bi981384x. PubMed DOI
Ruban A.V. Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 2016;170:1903–1916. doi: 10.1104/pp.15.01935. PubMed DOI PMC
Ruban A.V., Johnson M.P., Duffy C.D. The photoprotective molecular switch in the Photosystem II antenna. Biochim. Biophys. Acta. 2012;1817:167–181. doi: 10.1016/j.bbabio.2011.04.007. PubMed DOI
Goss R., Lepetit B. Biodiversity of NPQ. J. Plant Physiol. 2015;172:13–32. doi: 10.1016/j.jplph.2014.03.004. PubMed DOI
Bonente G., Ballottari M., Truong T.B., Morosinotto T., Ahn T.K., Fleming G.R., Niyogi K.K., Bassi R. Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol. 2011;9:e1000577. doi: 10.1371/journal.pbio.1000577. PubMed DOI PMC
Peers G., Truong T.B., Ostendorf E., Busch A., Elrad D., Grossman A.R., Hippler M., Niyogi K.K. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature. 2009;462:518–521. doi: 10.1038/nature08587. PubMed DOI
Gerotto C., Morosinotto T. Evolution of photoprotection mechanisms upon land colonization: Evidence of PSBS-dependent in late streptophyte algae. Physiol. Plant. 2013;149:583–598. doi: 10.1111/ppl.12070. PubMed DOI
Perin G., Bellan A., Michelberger T., Lyska D., Wakao S., Niyogi K.K., Morosinotto T. Modulation of xanthophyll cycle impacts biomass productivity in the marine microalga Nannochloropsis. Proc. Natl. Acad. Sci. USA. 2023;120:e2214119120. doi: 10.1073/pnas.2214119120. PubMed DOI PMC
Herdean A., Sutherland D.L., Ralph P.J. Phenoplate: An innovative method for assessing interacting effects of temperature and light on non-photochemical quenching in microalgae under chemical stress. N. Biotechnol. 2022;66:89–96. doi: 10.1016/j.nbt.2021.10.004. PubMed DOI
Schuback N., Tortell P.D., Berman-Frank I., Campbell D.A., Ciotti A., Courtecuisse E., Erickson Z.K., Fujiki T., Halsey K., Hickman A.E., et al. Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: Opportunities, caveats and recommendations. Front. Mar. Sci. 2021;8:690607. doi: 10.3389/fmars.2021.690607. DOI
Bukhov N., Carpentier R. Alternative photosystem I-driven electron transport routes: Mechanisms and functions. Photosynth. Res. 2004;82:17–33. doi: 10.1023/B:PRES.0000040442.59311.72. PubMed DOI
Nikolaou A., Bernardi A., Meneghesso A., Bezzo F., Morosinotto T., Chachuat B. A Model of chlorophyll fluorescence in microalgae integrating photoproduction, photoinhibition and photoregulation. J. Biotechnol. 2015;194:91–99. doi: 10.1016/j.jbiotec.2014.12.001. PubMed DOI
Figueroa F.L., Jerez C.G., Korbee N. Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Lat. Am. J. Aquat. Res. 2013;41:801–819. doi: 10.3856/vol41-issue5-fulltext-1. DOI
Lawrenz E., Silsbe G., Capuzzo E., Ylöstalo P., Forster R.M., Simis S.G.H., Prášil O., Kromkamp J.C., Hickman A.E., Moore C.M., et al. Predicting the electron requirement for carbon fixation in seas and oceans. PLoS ONE. 2013;8:e58137. doi: 10.1371/journal.pone.0058137. PubMed DOI PMC
Baker N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008;59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759. PubMed DOI
Kramer D.M., Avenson T.J., Edwards G.E. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci. 2004;9:349–357. doi: 10.1016/j.tplants.2004.05.001. PubMed DOI
Hendrickson L., Furbank R.T., Chow W.S. A Simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth. Res. 2004;82:73–81. doi: 10.1023/B:PRES.0000040446.87305.f4. PubMed DOI
Klughammer C., Schreiber U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Appl. Notes. 2008;1:27–35.
Kramer D.M., Johnson G., Kiirats O., Edwards G.E. New fluorescence parameters for the determination of Qa redox state and excitation energy fluxes. Photosynth. Res. 2004;79:209–218. doi: 10.1023/B:PRES.0000015391.99477.0d. PubMed DOI
Schreiber U., Schliwa U., Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 1986;10:51–62. doi: 10.1007/BF00024185. PubMed DOI
Ralph P.J., Gademann R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot. 2005;82:222–237. doi: 10.1016/j.aquabot.2005.02.006. DOI
White S., Anandraj A., Bux F. PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour. Technol. 2011;102:1675–1682. doi: 10.1016/j.biortech.2010.09.097. PubMed DOI
Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G.C., Govindjee, editor. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer; Dordrecht, The Netherlands: 2004. pp. 321–362.
Ranglová K., Lakatos G.E., Manoel J.A.C., Grivalský T., Masojídek J. Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements. Folia Microbiol. 2019;64:615–625. doi: 10.1007/s12223-019-00738-8. PubMed DOI
Wellburn A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI