Photosynthesis Monitoring in Microalgae Cultures Grown on Municipal Wastewater as a Nutrient Source in Large-Scale Outdoor Bioreactors

. 2022 Sep 22 ; 11 (10) : . [epub] 20220922

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36290287

Grantová podpora
727874 EU Horizon 2020

Microalgae cultures were used for a WW treatment to remediate nutrients while producing biomass and recycling water. In these trials, raceway ponds (RWPs; 1 and 0.5 ha) were located next to a municipal (WW) treatment plant in Mérida, Spain. The ponds were used for continuous, all-year-round microalgae production using WW as a source of nutrients. Neither CO2 nor air was supplied to cultures. The objective was to validate photosynthesis monitoring techniques in large-scale bioreactors. Various in-situ/ex-situ methods based on chlorophyll fluorescence and oxygen evolution measurements were used to follow culture performance. Photosynthesis variables gathered with these techniques were compared to the physiological behavior and growth of cultures. Good photosynthetic activity was indicated by the build-up of dissolved oxygen concentration up to 380% saturation, high photochemical yield (Fv/Fm = 0.62-0.71), and relative electron transport rate rETR between 200 and 450 μmol e- m-2 s-1 at midday, which resulted in biomass productivity of about 15-25 g DW m-2 day-1. The variables represent reliable markers reflecting the physiological status of microalgae cultures. Using waste nutrients, the biomass production cost can be significantly decreased for abundant biomass production in large-scale bioreactors, which can be exploited for agricultural purposes.

Zobrazit více v PubMed

Oswald W.J., Gotaas H.B., Ludwig H.F., Lynch V. Algae Symbiosis in Oxidation Ponds: III. Photosynthetic Oxygenation. Sewage Ind. Waste. 1953;25:692–705.

Sawayama S., Minowa T., Dote Y., Yokoyama S. Growth of the Hydrocarbon-Rich Microalga Botryococcus Braunii in Secondarily Treated Sewage. Appl. Microbiol. Biotechnol. 1992;38:135–138. doi: 10.1007/BF00169433. DOI

Zhang T.-Y., Wu Y.-H., Zhu S., Li F.-M., Hu H.-Y. Isolation and Heterotrophic Cultivation of Mixotrophic Microalgae Strains for Domestic Wastewater Treatment and Lipid Production under Dark Conditions. Bioresour. Technol. Reports. 2013;149:586–589. doi: 10.1016/j.biortech.2013.09.106. PubMed DOI

Morales-Amaral M.M., Gómez-Serrano C., Acién F.G., Fernández-Sevilla J.M., Molina-Grima E. Outdoor Production of Scenedesmus Sp. in Thin-Layer and Raceway Reactors Using Centrate from Anaerobic Digestion as the Sole Nutrient Source. Algal Res. 2015;12:99–108. doi: 10.1016/j.algal.2015.08.020. DOI

Plöhn M., Spain O., Sirin S., Silva M., Escudero-Oñate C., Ferrando-Climent L., Allahverdiyeva Y., Funk C. Wastewater Treatment by Microalgae. Physiol. Plant. 2021;173:568–578. doi: 10.1111/ppl.13427. PubMed DOI

Ferro L., Gentili F.G., Funk C. Isolation and Characterization of Microalgal Strains for Biomass Production and Wastewater Reclamation in Northern Sweden. Algal Res. 2018;32:44–53. doi: 10.1016/j.algal.2018.03.006. DOI

Chaudry S. Integrating Microalgae Cultivation with Wastewater Treatment: A Peek into Economics. Appl. Biochem. Biotechnol. 2021;193:3395–3406. doi: 10.1007/s12010-021-03612-x. PubMed DOI

Posadas E., del Mar Morales M., Gomez C., Acién F.G., Muñoz R. Influence of PH and CO2 Source on the Performance of Microalgae-Based Secondary Domestic Wastewater Treatment in Outdoors Pilot Raceways. Chem. Eng. J. 2015;265:239–248. doi: 10.1016/j.cej.2014.12.059. DOI

Lian J., Wijffels R.H., Smidt H., Sipkema D. The Effect of the Algal Microbiome on Industrial Production of Microalgae. Microb. Biotechnol. 2018;11:806–818. doi: 10.1111/1751-7915.13296. PubMed DOI PMC

Muñoz R., Guieysse B. Algal–Bacterial Processes for the Treatment of Hazardous Contaminants: A Review. Water Res. 2006;40:2799–2815. doi: 10.1016/j.watres.2006.06.011. PubMed DOI

Craggs R., Sutherland D., Campbell H. Hectare-Scale Demonstration of High Rate Algal Ponds for Enhanced Wastewater Treatment and Biofuel Production. J. Appl. Phycol. 2012;24:329–337. doi: 10.1007/s10811-012-9810-8. DOI

Gouveia L., Oliveira A.C. Microalgae as a Raw Material for Biofuels Production. J. Ind. Microbiol. Biot. 2009;36:269–274. doi: 10.1007/s10295-008-0495-6. PubMed DOI

Bošnjaković M., Sinaga N. The Perspective of Large-Scale Production of Algae Biodiesel. Appl. Sci. 2020;10:8181. doi: 10.3390/app10228181. DOI

Ördög V., Stirk W.A., Lenobel R., Bancírová M., Strnad M., van Staden J., Szigeti J., Németh L. Screening Microalgae for Some Potentially Useful Agricultural and Pharmaceutical Secondary Metabolites. J. App. Phycol. 2004;16:309–314. doi: 10.1023/B:JAPH.0000047789.34883.aa. DOI

Garcia-Gonzalez J., Sommerfeld M. Biofertilizer and Biostimulant Properties of the Microalga Acutodesmus dimorphus. J. Appl. Phycol. 2016;28:1051–1061. doi: 10.1007/s10811-015-0625-2. PubMed DOI PMC

Ronga D., Biazzi E., Parati K., Carminati D., Carminati E., Tava A. Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy. 2019;9:192. doi: 10.3390/agronomy9040192. DOI

Stirk W.A., van Staden J. Potential of Phytohormones as a Strategy to Improve Microalgae Productivity for Biotechnological Applications. Biotechnol. Adv. 2020;44:107612. doi: 10.1016/j.biotechadv.2020.107612. PubMed DOI

Acién F.G., Molina E., Reis A., Torzillo G., Zittelli G.C., Sepúlveda C., Masojídek J. Microalgae-Based Biofuels and Bioproducts. Woodhead Publishing; Sawston, UK: 2017. Photobioreactors for the Production of Microalgae; pp. 1–44. DOI

Borowitzka M.A., Moheimani N.R. Sustainable Biofuels from Algae. Mitig. Adapt. Strateg. Glob. Chang. 2013;18:13–25. doi: 10.1007/s11027-010-9271-9. DOI

Quijano G., Arcila J.S., Buitrón G. Microalgal-Bacterial Aggregates: Applications and Perspectives for Wastewater Treatment. Biotechnol. Adv. 2017;35:772–781. doi: 10.1016/j.biotechadv.2017.07.003. PubMed DOI

Sánchez Zurano A., Garrido Cárdenas J.A., Gómez Serrano C., Morales Amaral M., Acién-Fernández F.G., Fernández Sevilla J.M., Molina Grima E. Year-Long Assessment of a Pilot-Scale Thin-Layer Reactor for Microalgae Wastewater Treatment. Variation in the Microalgae-Bacteria Consortium and the Impact of Environmental Conditions. Algal Res. 2020;50:101983. doi: 10.1016/j.algal.2020.101983. DOI

Acién F.G.G., Fernández J.M.M., Magán J.J.J., Molina E. Production Cost of a Real Microalgae Production Plant and Strategies to Reduce It. Biotechnol. Adv. 2012;30:1344–1353. doi: 10.1016/j.biotechadv.2012.02.005. PubMed DOI

De Godos I., Arbib Z., Lara E., Rogalla F. Evaluation of High Rate Algae Ponds for Treatment of Anaerobically Digested Wastewater: Effect of CO2 Addition and Modification of Dilution Rate. Bioresour. Technol. 2016;220:253–261. doi: 10.1016/j.biortech.2016.08.056. PubMed DOI

Gómez C., Escudero R., Morales M.M., Figueroa F.L., Fernández-Sevilla J.M., Acién F.G. Use of Secondary-Treated Wastewater for the Production of Muriellopsis sp. Appl. Microbiol. Biotechnol. 2013;97:2239–2249. doi: 10.1007/s00253-012-4634-7. PubMed DOI

Del Campo J. Carotenoid Content of Chlorophycean Microalgae: Factors Determining Lutein Accumulation in Muriellopsis Sp. (Chlorophyta) J. Biotechnol. 2000;76:51–59. doi: 10.1016/S0168-1656(99)00178-9. PubMed DOI

Andersen R.A., Berges J.A., Harrison P.J., Watanabe M.M. Appendix A—Recipes for Freshwater and Seawater Media. In: Andersen R.A., editor. Algal Culturing Techniques. Elsevier; Amsterdam, The Netherlands: 2005. pp. 429–538.

Malapascua J.R.F., Jerez C.G., Sergejevová M., Figueroa F.L., Masojídek J. Photosynthesis Monitoring to Optimize Growth of Microalgal Mass Cultures: Application of Chlorophyll Fluorescence Techniques. Aquat. Biol. 2014;22:123–140. doi: 10.3354/ab00597. DOI

Jerez C.G., Malapascua J.R., Sergejevová M., Figueroa F.L., Masojídek J. Effect of Nutrient Starvation under High Irradiance on Lipid and Starch Accumulation in Chlorella Fusca (Chlorophyta) Mar. Biotechnol. 2016;18:24–36. doi: 10.1007/s10126-015-9664-6. PubMed DOI

Schreiber U., Endo T., Mi H., Asada K. Quenching Analysis of Chlorophyll Fluorescence by the Saturation Pulse Method: Particular Aspects Relating to the Study of Eukaryotic Algae and Cyanobacteria. Plant. Cell Physiol. 1995;36:873–882. doi: 10.1093/oxfordjournals.pcp.a078833. DOI

Masojídek J., Ranglová K., Rearte T.A., Celis Plá P.S.M., Torzillo G., Benavides A.M.S., Neori A., Gómez C., Álvarez-Gómez F., Lukeš M., et al. Changes in Photosynthesis, Growth and Biomass Composition in Outdoor Chlorella G120 Culture during the Metabolic Shift from Heterotrophic to Phototrophic Cultivation Regime. Algal Res. 2021;56:102303. doi: 10.1016/j.algal.2021.102303. DOI

Schreiber U., Schliwa U., Bilger W. Continuous Recording of Photochemical and Non-Photochemical Chlorophyll Fluorescence Quenching with a New Type of Modulation Fluorometer. Photosynth. Res. 1986;10:51–62. doi: 10.1007/BF00024185. PubMed DOI

Narayan A., Misra M., Singh R. Chlorophyll Fluorescence in Plant Biology. Biophysics. 2012;7:171–192. doi: 10.5772/35111. DOI

Ralph P.J., Gademann R. Rapid Light Curves: A Powerful Tool to Assess Photosynthetic Activity. Aquat. Bot. 2005;82:222–237. doi: 10.1016/j.aquabot.2005.02.006. DOI

White S., Anandraj A., Bux F. PAM Fluorometry as a Tool to Assess Microalgal Nutrient Stress and Monitor Cellular Neutral Lipids. Bioresour. Technol. 2011;102:1675–1682. doi: 10.1016/j.biortech.2010.09.097. PubMed DOI

Klughammer C., Schreiber U. Complementary PS II Quantum Yields Calculated from Simple Fluorescence Parameters Measured by PAM Fluorometry and the Saturation Pulse Method. PAM Appl. Notes. 2008;1:27–35.

Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient. In: Papageorgiou G.C., Govindjee, editors. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer Netherlands; Dordrecht, The Netherlands: 2004. pp. 321–362.

Ranglová K., Lakatos G.E., Câmara Manoel J.A., Grivalský T., Suárez Estrella F., Acién Fernández F.G., Molnár Z., Ördög V., Masojídek J. Growth, Biostimulant and Biopesticide Activity of the MACC-1 Chlorella Strain Cultivated Outdoors in Inorganic Medium and Wastewater. Algal Res. 2020;53:102136. doi: 10.1016/j.algal.2020.102136. DOI

Wellburn A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, using Various Solvents with Spectrophotometers of Different Resolution. J. Plant. Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI

Zhao Z.R., Wu Z.L., Huang G.Q., Li G.R. An Improved Disk Bioassay for Determining Activities of Plant Growth Regulators. J. Plant. Growth Regul. 1992;11:209–213. doi: 10.1007/BF02115479. DOI

Kuhnle J.A., Fuller G., Corse J., Mackey B.E. Antisenescent Activity of Natural Cytokinins. Physiol. Plant. 1977;41:14–21. doi: 10.1111/j.1399-3054.1977.tb01514.x. DOI

Hess C.E.C. Mung Bean Bioassay for the Detection of Root Promoting Substances. Plant. Physiol. 1961;36:21.

Posadas E., Alcántara C., García-Encina P.A., Gouveia L., Guieysse B., Norvill Z., Acién F.G., Markou G., Congestri R., Koreiviene J., et al. Microalgae-Based Biofuels and Bioproducts. Elsevier; Amsterdam, The Netherlands: 2017. Microalgae Cultivation in Wastewater; pp. 67–91.

Masojídek J., Ranglová K., Lakatos G.E., Silva Benavides A.M., Torzillo G. Variables Governing Photosynthesis and Growth in Microalgae Mass Cultures. Processes. 2021;9:820. doi: 10.3390/pr9050820. DOI

Torzillo G., Vonshak A. Environmental Stress Physiology with Reference to Mass Cultures. In: Richmond A., Hu Q., editors. Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Wiley-Blackwell; Oxford, UK: 2013. pp. 90–113.

Masojídek J., Kopecký J., Giannelli L., Torzillo G. Productivity Correlated to Photobiochemical Performance of Chlorella Mass Cultures Grown Outdoors in Thin-Layer Cascades. J. Ind. Microbiol. Biotechnol. 2011;38:307–317. doi: 10.1007/s10295-010-0774-x. PubMed DOI

Lívanský K. Dependence of the Apparent CO2 Mass Transfer Coefficient KLa on the Nutrient Solution PH in Outdoor Algal Culture Units. Arch. Hydrobiol. Suppl. Algol. Stud. 1993;71:111–119.

Lívanský K., Doucha J. CO2 and O2 Gas Exchange in Outdoor Thin-Layer High Density Microalgal Cultures. J. Appl. Phycol. 1996;8:353–358. doi: 10.1007/BF02178578. DOI

Arbib Z., Ruiz J., Álvarez-Díaz P., Garrido-Pérez C., Barragan J., Perales J.A. Effect of PH Control by Means of Flue Gas Addition on Three Different Photo-Bioreactors Treating Urban Wastewater in Long-Term Operation. Ecol. Eng. 2013;57:226–235. doi: 10.1016/j.ecoleng.2013.04.040. DOI

Rearte T.A., Celis-Plá P.S.M., Neori A., Masojídek J., Torzillo G., Gómez-Serrano C., Silva Benavides A.M., Álvarez-Gómez F., Abdala-Díaz R.T., Ranglová K., et al. Photosynthetic Performance of Chlorella Vulgaris R117 Mass Culture Is Moderated by Diurnal Oxygen Gradients in an Outdoor Thin Layer Cascade. Algal Res. 2021;54:102176. doi: 10.1016/j.algal.2020.102176. DOI

Posadas E., Bochon S., Coca M., García-González M.C., García-Encina P.A., Muñoz R. Microalgae-Based Agro-Industrial Wastewater Treatment: A Preliminary Screening of Biodegradability. J. Appl. Phycol. 2014;26:2335–2345. doi: 10.1007/s10811-014-0263-0. DOI

Beardall J., Quigg A., Raven J. Oxygen Consumption: Photorespiration and Chlororespiration. In: Larkum A., Douglas S., Raven J., editors. Photosynthesis in Algae. Kluwer Academic Publishers; Norwell, MA, USA: 2003. pp. 157–181.

Masojídek J., Kopecký J., Koblížek M., Torzillo G. The Xanthophyll Cycle in Green Algae (Chlorophyta): Its Role in the Photosynthetic Apparatus. Plant. Biol. 2004;6:342–349. doi: 10.1055/s-2004-820884. PubMed DOI

Delgadillo-Mirquez L., Lopes F., Taidi B., Pareau D. Nitrogen and Phosphate Removal from Wastewater with a Mixed Microalgae and Bacteria Culture. Biotechnol. Reports. 2016;11:18–26. doi: 10.1016/j.btre.2016.04.003. PubMed DOI PMC

Wang Y., Guo W., Yen H.-W., Ho S.-H., Lo Y.-C., Cheng C.-L., Ren N., Chang J.-S. Cultivation of Chlorella Vulgaris JSC-6 with Swine Wastewater for Simultaneous Nutrient/COD Removal and Carbohydrate Production. Bioresour. Technol. 2015;198:619–625. doi: 10.1016/j.biortech.2015.09.067. PubMed DOI

Santini G., Biondi N., Rodolfi L., Tredici M.R. Plant Biostimulants from Cyanobacteria: An Emerging Strategy to Improve Yields and Sustainability in Agriculture. Plants. 2021;10:643. doi: 10.3390/plants10040643. PubMed DOI PMC

Kopittke P.M., Menzies N.W., Wang P., McKenna B.A., Lombi E. Soil and the Intensification of Agriculture for Global Food Security. Environ. Int. 2019;132:105078. doi: 10.1016/j.envint.2019.105078. PubMed DOI

Du Jardin P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015;196:3–14. doi: 10.1016/j.scienta.2015.09.021. DOI

Plaza B.M., Gómez-Serrano C., Acién-Fernández F.G., Jimenez-Becker S. Effect of Microalgae Hydrolysate Foliar Application (Arthrospira Platensis and Scenedesmus Sp.) on Petunia x Hybrida Growth. J. Appl. Phycol. 2018;30:2359–2365. doi: 10.1007/s10811-018-1427-0. DOI

Takács G., Stirk W.A., Gergely I., Molnár Z., van Staden J., Ördög V. Biostimulating Effects of the Cyanobacterium Nostoc Piscinale on Winter Wheat in Field Experiments. South. African J. Bot. 2019;126:99–106. doi: 10.1016/j.sajb.2019.06.033. DOI

Toribio A., Suárez-Estrella F., Jurado M., López M., López-González J., Moreno J. Prospection of Cyanobacteria Producing Bioactive Substances and Their Application as Potential Phytostimulating Agents. Biotechnol. Rep. 2020;26:e00449. doi: 10.1016/j.btre.2020.e00449. PubMed DOI PMC

Stirk W.A., Bálint P., Maróti G., Varga Z., Lantos Z., van Staden J., Ördög V. Comparison of Monocultures and a Mixed Culture of Three Chlorellaceae Strains to Optimize Biomass Production and Biochemical Content in Microalgae Grown in a Greenhouse. J. Appl. Phycol. 2021;33:2755–2766. doi: 10.1007/s10811-021-02515-y. DOI

Mutum L., Janda T., Ördög V., Molnár Z. Biologia Futura: Potential of Different Forms of Microalgae for Soil Improvement. Biol. Futur. 2022;73:1–8. doi: 10.1007/s42977-021-00103-2. PubMed DOI

Navarro-López E., Ruíz-Nieto A., Ferreira A., Acién F.G., Gouveia L. Biostimulant Potential of Scenedesmus Obliquus Grown in Brewery Wastewater. Molecules. 2020;25:664. doi: 10.3390/molecules25030664. PubMed DOI PMC

Carneiro M., Ranglová K., Lakatos G.E., Câmara Manoel J.A., Grivalský T., Kozhan D.M., Toribio A., Moreno J., Otero A., Varela J., et al. Growth and Bioactivity of Two Chlorophyte (Chlorella and Scenedesmus) Strains Co-Cultured Outdoors in Two Different Thin-Layer Units Using Municipal Wastewater as a Nutrient Source. Algal Res. 2021;56:102299. doi: 10.1016/j.algal.2021.102299. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace