Photosynthesis Monitoring in Microalgae Cultures Grown on Municipal Wastewater as a Nutrient Source in Large-Scale Outdoor Bioreactors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
727874
EU Horizon 2020
PubMed
36290287
PubMed Central
PMC9598107
DOI
10.3390/biology11101380
PII: biology11101380
Knihovny.cz E-zdroje
- Klíčová slova
- Micractinium, biomass, biostimulanting activity, chlorophyll fluorescence, large-scale bioreactor, microalga, oxygen production, photosynthesis, raceway pond, wastewater,
- Publikační typ
- časopisecké články MeSH
Microalgae cultures were used for a WW treatment to remediate nutrients while producing biomass and recycling water. In these trials, raceway ponds (RWPs; 1 and 0.5 ha) were located next to a municipal (WW) treatment plant in Mérida, Spain. The ponds were used for continuous, all-year-round microalgae production using WW as a source of nutrients. Neither CO2 nor air was supplied to cultures. The objective was to validate photosynthesis monitoring techniques in large-scale bioreactors. Various in-situ/ex-situ methods based on chlorophyll fluorescence and oxygen evolution measurements were used to follow culture performance. Photosynthesis variables gathered with these techniques were compared to the physiological behavior and growth of cultures. Good photosynthetic activity was indicated by the build-up of dissolved oxygen concentration up to 380% saturation, high photochemical yield (Fv/Fm = 0.62-0.71), and relative electron transport rate rETR between 200 and 450 μmol e- m-2 s-1 at midday, which resulted in biomass productivity of about 15-25 g DW m-2 day-1. The variables represent reliable markers reflecting the physiological status of microalgae cultures. Using waste nutrients, the biomass production cost can be significantly decreased for abundant biomass production in large-scale bioreactors, which can be exploited for agricultural purposes.
Balaton Limnological Research Institute 8237 Tihany Hungary
CNR Institute of Bioeconomy 50019 Sesto Fiorentino Italy
Departamento de Innovación y Tecnología Aqualia 28231 Mérida Spain
Department of Chemical Engineering University of Almería 04120 Almería Spain
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
Spanish Bank of Algae Universidad de Las Palmas de Gran Canaria 35214 Telde Spain
Zobrazit více v PubMed
Oswald W.J., Gotaas H.B., Ludwig H.F., Lynch V. Algae Symbiosis in Oxidation Ponds: III. Photosynthetic Oxygenation. Sewage Ind. Waste. 1953;25:692–705.
Sawayama S., Minowa T., Dote Y., Yokoyama S. Growth of the Hydrocarbon-Rich Microalga Botryococcus Braunii in Secondarily Treated Sewage. Appl. Microbiol. Biotechnol. 1992;38:135–138. doi: 10.1007/BF00169433. DOI
Zhang T.-Y., Wu Y.-H., Zhu S., Li F.-M., Hu H.-Y. Isolation and Heterotrophic Cultivation of Mixotrophic Microalgae Strains for Domestic Wastewater Treatment and Lipid Production under Dark Conditions. Bioresour. Technol. Reports. 2013;149:586–589. doi: 10.1016/j.biortech.2013.09.106. PubMed DOI
Morales-Amaral M.M., Gómez-Serrano C., Acién F.G., Fernández-Sevilla J.M., Molina-Grima E. Outdoor Production of Scenedesmus Sp. in Thin-Layer and Raceway Reactors Using Centrate from Anaerobic Digestion as the Sole Nutrient Source. Algal Res. 2015;12:99–108. doi: 10.1016/j.algal.2015.08.020. DOI
Plöhn M., Spain O., Sirin S., Silva M., Escudero-Oñate C., Ferrando-Climent L., Allahverdiyeva Y., Funk C. Wastewater Treatment by Microalgae. Physiol. Plant. 2021;173:568–578. doi: 10.1111/ppl.13427. PubMed DOI
Ferro L., Gentili F.G., Funk C. Isolation and Characterization of Microalgal Strains for Biomass Production and Wastewater Reclamation in Northern Sweden. Algal Res. 2018;32:44–53. doi: 10.1016/j.algal.2018.03.006. DOI
Chaudry S. Integrating Microalgae Cultivation with Wastewater Treatment: A Peek into Economics. Appl. Biochem. Biotechnol. 2021;193:3395–3406. doi: 10.1007/s12010-021-03612-x. PubMed DOI
Posadas E., del Mar Morales M., Gomez C., Acién F.G., Muñoz R. Influence of PH and CO2 Source on the Performance of Microalgae-Based Secondary Domestic Wastewater Treatment in Outdoors Pilot Raceways. Chem. Eng. J. 2015;265:239–248. doi: 10.1016/j.cej.2014.12.059. DOI
Lian J., Wijffels R.H., Smidt H., Sipkema D. The Effect of the Algal Microbiome on Industrial Production of Microalgae. Microb. Biotechnol. 2018;11:806–818. doi: 10.1111/1751-7915.13296. PubMed DOI PMC
Muñoz R., Guieysse B. Algal–Bacterial Processes for the Treatment of Hazardous Contaminants: A Review. Water Res. 2006;40:2799–2815. doi: 10.1016/j.watres.2006.06.011. PubMed DOI
Craggs R., Sutherland D., Campbell H. Hectare-Scale Demonstration of High Rate Algal Ponds for Enhanced Wastewater Treatment and Biofuel Production. J. Appl. Phycol. 2012;24:329–337. doi: 10.1007/s10811-012-9810-8. DOI
Gouveia L., Oliveira A.C. Microalgae as a Raw Material for Biofuels Production. J. Ind. Microbiol. Biot. 2009;36:269–274. doi: 10.1007/s10295-008-0495-6. PubMed DOI
Bošnjaković M., Sinaga N. The Perspective of Large-Scale Production of Algae Biodiesel. Appl. Sci. 2020;10:8181. doi: 10.3390/app10228181. DOI
Ördög V., Stirk W.A., Lenobel R., Bancírová M., Strnad M., van Staden J., Szigeti J., Németh L. Screening Microalgae for Some Potentially Useful Agricultural and Pharmaceutical Secondary Metabolites. J. App. Phycol. 2004;16:309–314. doi: 10.1023/B:JAPH.0000047789.34883.aa. DOI
Garcia-Gonzalez J., Sommerfeld M. Biofertilizer and Biostimulant Properties of the Microalga Acutodesmus dimorphus. J. Appl. Phycol. 2016;28:1051–1061. doi: 10.1007/s10811-015-0625-2. PubMed DOI PMC
Ronga D., Biazzi E., Parati K., Carminati D., Carminati E., Tava A. Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy. 2019;9:192. doi: 10.3390/agronomy9040192. DOI
Stirk W.A., van Staden J. Potential of Phytohormones as a Strategy to Improve Microalgae Productivity for Biotechnological Applications. Biotechnol. Adv. 2020;44:107612. doi: 10.1016/j.biotechadv.2020.107612. PubMed DOI
Acién F.G., Molina E., Reis A., Torzillo G., Zittelli G.C., Sepúlveda C., Masojídek J. Microalgae-Based Biofuels and Bioproducts. Woodhead Publishing; Sawston, UK: 2017. Photobioreactors for the Production of Microalgae; pp. 1–44. DOI
Borowitzka M.A., Moheimani N.R. Sustainable Biofuels from Algae. Mitig. Adapt. Strateg. Glob. Chang. 2013;18:13–25. doi: 10.1007/s11027-010-9271-9. DOI
Quijano G., Arcila J.S., Buitrón G. Microalgal-Bacterial Aggregates: Applications and Perspectives for Wastewater Treatment. Biotechnol. Adv. 2017;35:772–781. doi: 10.1016/j.biotechadv.2017.07.003. PubMed DOI
Sánchez Zurano A., Garrido Cárdenas J.A., Gómez Serrano C., Morales Amaral M., Acién-Fernández F.G., Fernández Sevilla J.M., Molina Grima E. Year-Long Assessment of a Pilot-Scale Thin-Layer Reactor for Microalgae Wastewater Treatment. Variation in the Microalgae-Bacteria Consortium and the Impact of Environmental Conditions. Algal Res. 2020;50:101983. doi: 10.1016/j.algal.2020.101983. DOI
Acién F.G.G., Fernández J.M.M., Magán J.J.J., Molina E. Production Cost of a Real Microalgae Production Plant and Strategies to Reduce It. Biotechnol. Adv. 2012;30:1344–1353. doi: 10.1016/j.biotechadv.2012.02.005. PubMed DOI
De Godos I., Arbib Z., Lara E., Rogalla F. Evaluation of High Rate Algae Ponds for Treatment of Anaerobically Digested Wastewater: Effect of CO2 Addition and Modification of Dilution Rate. Bioresour. Technol. 2016;220:253–261. doi: 10.1016/j.biortech.2016.08.056. PubMed DOI
Gómez C., Escudero R., Morales M.M., Figueroa F.L., Fernández-Sevilla J.M., Acién F.G. Use of Secondary-Treated Wastewater for the Production of Muriellopsis sp. Appl. Microbiol. Biotechnol. 2013;97:2239–2249. doi: 10.1007/s00253-012-4634-7. PubMed DOI
Del Campo J. Carotenoid Content of Chlorophycean Microalgae: Factors Determining Lutein Accumulation in Muriellopsis Sp. (Chlorophyta) J. Biotechnol. 2000;76:51–59. doi: 10.1016/S0168-1656(99)00178-9. PubMed DOI
Andersen R.A., Berges J.A., Harrison P.J., Watanabe M.M. Appendix A—Recipes for Freshwater and Seawater Media. In: Andersen R.A., editor. Algal Culturing Techniques. Elsevier; Amsterdam, The Netherlands: 2005. pp. 429–538.
Malapascua J.R.F., Jerez C.G., Sergejevová M., Figueroa F.L., Masojídek J. Photosynthesis Monitoring to Optimize Growth of Microalgal Mass Cultures: Application of Chlorophyll Fluorescence Techniques. Aquat. Biol. 2014;22:123–140. doi: 10.3354/ab00597. DOI
Jerez C.G., Malapascua J.R., Sergejevová M., Figueroa F.L., Masojídek J. Effect of Nutrient Starvation under High Irradiance on Lipid and Starch Accumulation in Chlorella Fusca (Chlorophyta) Mar. Biotechnol. 2016;18:24–36. doi: 10.1007/s10126-015-9664-6. PubMed DOI
Schreiber U., Endo T., Mi H., Asada K. Quenching Analysis of Chlorophyll Fluorescence by the Saturation Pulse Method: Particular Aspects Relating to the Study of Eukaryotic Algae and Cyanobacteria. Plant. Cell Physiol. 1995;36:873–882. doi: 10.1093/oxfordjournals.pcp.a078833. DOI
Masojídek J., Ranglová K., Rearte T.A., Celis Plá P.S.M., Torzillo G., Benavides A.M.S., Neori A., Gómez C., Álvarez-Gómez F., Lukeš M., et al. Changes in Photosynthesis, Growth and Biomass Composition in Outdoor Chlorella G120 Culture during the Metabolic Shift from Heterotrophic to Phototrophic Cultivation Regime. Algal Res. 2021;56:102303. doi: 10.1016/j.algal.2021.102303. DOI
Schreiber U., Schliwa U., Bilger W. Continuous Recording of Photochemical and Non-Photochemical Chlorophyll Fluorescence Quenching with a New Type of Modulation Fluorometer. Photosynth. Res. 1986;10:51–62. doi: 10.1007/BF00024185. PubMed DOI
Narayan A., Misra M., Singh R. Chlorophyll Fluorescence in Plant Biology. Biophysics. 2012;7:171–192. doi: 10.5772/35111. DOI
Ralph P.J., Gademann R. Rapid Light Curves: A Powerful Tool to Assess Photosynthetic Activity. Aquat. Bot. 2005;82:222–237. doi: 10.1016/j.aquabot.2005.02.006. DOI
White S., Anandraj A., Bux F. PAM Fluorometry as a Tool to Assess Microalgal Nutrient Stress and Monitor Cellular Neutral Lipids. Bioresour. Technol. 2011;102:1675–1682. doi: 10.1016/j.biortech.2010.09.097. PubMed DOI
Klughammer C., Schreiber U. Complementary PS II Quantum Yields Calculated from Simple Fluorescence Parameters Measured by PAM Fluorometry and the Saturation Pulse Method. PAM Appl. Notes. 2008;1:27–35.
Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient. In: Papageorgiou G.C., Govindjee, editors. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer Netherlands; Dordrecht, The Netherlands: 2004. pp. 321–362.
Ranglová K., Lakatos G.E., Câmara Manoel J.A., Grivalský T., Suárez Estrella F., Acién Fernández F.G., Molnár Z., Ördög V., Masojídek J. Growth, Biostimulant and Biopesticide Activity of the MACC-1 Chlorella Strain Cultivated Outdoors in Inorganic Medium and Wastewater. Algal Res. 2020;53:102136. doi: 10.1016/j.algal.2020.102136. DOI
Wellburn A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, using Various Solvents with Spectrophotometers of Different Resolution. J. Plant. Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI
Zhao Z.R., Wu Z.L., Huang G.Q., Li G.R. An Improved Disk Bioassay for Determining Activities of Plant Growth Regulators. J. Plant. Growth Regul. 1992;11:209–213. doi: 10.1007/BF02115479. DOI
Kuhnle J.A., Fuller G., Corse J., Mackey B.E. Antisenescent Activity of Natural Cytokinins. Physiol. Plant. 1977;41:14–21. doi: 10.1111/j.1399-3054.1977.tb01514.x. DOI
Hess C.E.C. Mung Bean Bioassay for the Detection of Root Promoting Substances. Plant. Physiol. 1961;36:21.
Posadas E., Alcántara C., García-Encina P.A., Gouveia L., Guieysse B., Norvill Z., Acién F.G., Markou G., Congestri R., Koreiviene J., et al. Microalgae-Based Biofuels and Bioproducts. Elsevier; Amsterdam, The Netherlands: 2017. Microalgae Cultivation in Wastewater; pp. 67–91.
Masojídek J., Ranglová K., Lakatos G.E., Silva Benavides A.M., Torzillo G. Variables Governing Photosynthesis and Growth in Microalgae Mass Cultures. Processes. 2021;9:820. doi: 10.3390/pr9050820. DOI
Torzillo G., Vonshak A. Environmental Stress Physiology with Reference to Mass Cultures. In: Richmond A., Hu Q., editors. Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Wiley-Blackwell; Oxford, UK: 2013. pp. 90–113.
Masojídek J., Kopecký J., Giannelli L., Torzillo G. Productivity Correlated to Photobiochemical Performance of Chlorella Mass Cultures Grown Outdoors in Thin-Layer Cascades. J. Ind. Microbiol. Biotechnol. 2011;38:307–317. doi: 10.1007/s10295-010-0774-x. PubMed DOI
Lívanský K. Dependence of the Apparent CO2 Mass Transfer Coefficient KLa on the Nutrient Solution PH in Outdoor Algal Culture Units. Arch. Hydrobiol. Suppl. Algol. Stud. 1993;71:111–119.
Lívanský K., Doucha J. CO2 and O2 Gas Exchange in Outdoor Thin-Layer High Density Microalgal Cultures. J. Appl. Phycol. 1996;8:353–358. doi: 10.1007/BF02178578. DOI
Arbib Z., Ruiz J., Álvarez-Díaz P., Garrido-Pérez C., Barragan J., Perales J.A. Effect of PH Control by Means of Flue Gas Addition on Three Different Photo-Bioreactors Treating Urban Wastewater in Long-Term Operation. Ecol. Eng. 2013;57:226–235. doi: 10.1016/j.ecoleng.2013.04.040. DOI
Rearte T.A., Celis-Plá P.S.M., Neori A., Masojídek J., Torzillo G., Gómez-Serrano C., Silva Benavides A.M., Álvarez-Gómez F., Abdala-Díaz R.T., Ranglová K., et al. Photosynthetic Performance of Chlorella Vulgaris R117 Mass Culture Is Moderated by Diurnal Oxygen Gradients in an Outdoor Thin Layer Cascade. Algal Res. 2021;54:102176. doi: 10.1016/j.algal.2020.102176. DOI
Posadas E., Bochon S., Coca M., García-González M.C., García-Encina P.A., Muñoz R. Microalgae-Based Agro-Industrial Wastewater Treatment: A Preliminary Screening of Biodegradability. J. Appl. Phycol. 2014;26:2335–2345. doi: 10.1007/s10811-014-0263-0. DOI
Beardall J., Quigg A., Raven J. Oxygen Consumption: Photorespiration and Chlororespiration. In: Larkum A., Douglas S., Raven J., editors. Photosynthesis in Algae. Kluwer Academic Publishers; Norwell, MA, USA: 2003. pp. 157–181.
Masojídek J., Kopecký J., Koblížek M., Torzillo G. The Xanthophyll Cycle in Green Algae (Chlorophyta): Its Role in the Photosynthetic Apparatus. Plant. Biol. 2004;6:342–349. doi: 10.1055/s-2004-820884. PubMed DOI
Delgadillo-Mirquez L., Lopes F., Taidi B., Pareau D. Nitrogen and Phosphate Removal from Wastewater with a Mixed Microalgae and Bacteria Culture. Biotechnol. Reports. 2016;11:18–26. doi: 10.1016/j.btre.2016.04.003. PubMed DOI PMC
Wang Y., Guo W., Yen H.-W., Ho S.-H., Lo Y.-C., Cheng C.-L., Ren N., Chang J.-S. Cultivation of Chlorella Vulgaris JSC-6 with Swine Wastewater for Simultaneous Nutrient/COD Removal and Carbohydrate Production. Bioresour. Technol. 2015;198:619–625. doi: 10.1016/j.biortech.2015.09.067. PubMed DOI
Santini G., Biondi N., Rodolfi L., Tredici M.R. Plant Biostimulants from Cyanobacteria: An Emerging Strategy to Improve Yields and Sustainability in Agriculture. Plants. 2021;10:643. doi: 10.3390/plants10040643. PubMed DOI PMC
Kopittke P.M., Menzies N.W., Wang P., McKenna B.A., Lombi E. Soil and the Intensification of Agriculture for Global Food Security. Environ. Int. 2019;132:105078. doi: 10.1016/j.envint.2019.105078. PubMed DOI
Du Jardin P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015;196:3–14. doi: 10.1016/j.scienta.2015.09.021. DOI
Plaza B.M., Gómez-Serrano C., Acién-Fernández F.G., Jimenez-Becker S. Effect of Microalgae Hydrolysate Foliar Application (Arthrospira Platensis and Scenedesmus Sp.) on Petunia x Hybrida Growth. J. Appl. Phycol. 2018;30:2359–2365. doi: 10.1007/s10811-018-1427-0. DOI
Takács G., Stirk W.A., Gergely I., Molnár Z., van Staden J., Ördög V. Biostimulating Effects of the Cyanobacterium Nostoc Piscinale on Winter Wheat in Field Experiments. South. African J. Bot. 2019;126:99–106. doi: 10.1016/j.sajb.2019.06.033. DOI
Toribio A., Suárez-Estrella F., Jurado M., López M., López-González J., Moreno J. Prospection of Cyanobacteria Producing Bioactive Substances and Their Application as Potential Phytostimulating Agents. Biotechnol. Rep. 2020;26:e00449. doi: 10.1016/j.btre.2020.e00449. PubMed DOI PMC
Stirk W.A., Bálint P., Maróti G., Varga Z., Lantos Z., van Staden J., Ördög V. Comparison of Monocultures and a Mixed Culture of Three Chlorellaceae Strains to Optimize Biomass Production and Biochemical Content in Microalgae Grown in a Greenhouse. J. Appl. Phycol. 2021;33:2755–2766. doi: 10.1007/s10811-021-02515-y. DOI
Mutum L., Janda T., Ördög V., Molnár Z. Biologia Futura: Potential of Different Forms of Microalgae for Soil Improvement. Biol. Futur. 2022;73:1–8. doi: 10.1007/s42977-021-00103-2. PubMed DOI
Navarro-López E., Ruíz-Nieto A., Ferreira A., Acién F.G., Gouveia L. Biostimulant Potential of Scenedesmus Obliquus Grown in Brewery Wastewater. Molecules. 2020;25:664. doi: 10.3390/molecules25030664. PubMed DOI PMC
Carneiro M., Ranglová K., Lakatos G.E., Câmara Manoel J.A., Grivalský T., Kozhan D.M., Toribio A., Moreno J., Otero A., Varela J., et al. Growth and Bioactivity of Two Chlorophyte (Chlorella and Scenedesmus) Strains Co-Cultured Outdoors in Two Different Thin-Layer Units Using Municipal Wastewater as a Nutrient Source. Algal Res. 2021;56:102299. doi: 10.1016/j.algal.2021.102299. DOI
Photosynthetic Activity Measured In Situ in Microalgae Cultures Grown in Pilot-Scale Raceway Ponds
Solar bioreactors used for the industrial production of microalgae
Photosynthetic performance of Chlamydopodium (Chlorophyta) cultures grown in outdoor bioreactors