Photosynthetic performance of Chlamydopodium (Chlorophyta) cultures grown in outdoor bioreactors

. 2023 Apr ; 107 (7-8) : 2249-2262. [epub] 20230311

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36905416

Grantová podpora
727874 Horizon 2020 Framework Programme
2022 Akademie Věd České Republiky

Odkazy

PubMed 36905416
DOI 10.1007/s00253-023-12428-0
PII: 10.1007/s00253-023-12428-0
Knihovny.cz E-zdroje

The microalga Chlamydopodium fusiforme MACC-430 was cultured in two types of outdoor pilot cultivation units-a thin-layer cascade (TLC) and a raceway pond (RWP) placed in a greenhouse. This case study aimed to test their potential suitability for cultivation scale-up to produce biomass for agriculture purposes (e.g., as biofertilizer or biostimulant). The culture response to the alteration of environmental conditions was evaluated in "exemplary" situations of good and bad weather conditions using several photosynthesis measuring techniques, namely oxygen production, and chlorophyll (Chl) fluorescence. Validation of their suitability for online monitoring in large-scale plants has been one of the objectives of the trials. Both techniques were found fast and robust reliable to monitor microalgae activity in large-scale cultivation units. In both bioreactors, Chlamydopodium cultures grew well in the semi-continuous regime using daily dilution (0.20-0.25 day-1). The biomass productivity calculated per volume was significantly (about 5 times) higher in the RWPs compared to the TLCs. The measured photosynthesis variables showed that the build-up of dissolved oxygen concentration in the TLC was higher, up to 125-150% of saturation (%sat) as compared to the RWP (102-104%sat). As only ambient CO2 was available, its shortage was indicated by a pH increase due to photosynthetic activity in the thin-layer bioreactor at higher irradiance intensities. In this setup, the RWP was considered more suitable for scale-up due to higher areal productivity, lower construction and maintenance costs, the smaller land area required to maintain large culture volumes, as well as lower carbon depletion and dissolved oxygen build-up. KEY POINTS: • Chlamydopodium was grown in both raceways and thin-layer cascades in pilot-scale. • Various photosynthesis techniques were validated for growth monitoring. • In general, raceway ponds were evaluated as more suitable for cultivation scale-up.

Zobrazit více v PubMed

Acién FG, Molina E, Reis A, Torzillo G, Zittelli G, Sepúlveda J, Masojídek J (2017) Photobioreactors for the production of microalgae. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-based biofuels and bioproducts. Elsevier-Woodland Publishing, Duxford, U.K, From feedstock cultivation to end-products, pp 1–44

Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353 PubMed DOI

Andersen RA (2005) Algal Culturing Techniques. Appendix – Recipes for freshwater and seawater media. Elsevier Academic Press, Amsterdam, The Netherlands, pp 429-532

Arbib, Z, Maín D, Cano R, Saúco C, Fernandez M, Lata E, Rogalla F (2022) Large-scale demonstration of microalgae-based wastewater biorefineries. In: Demirer GN, Uludag-Demirer S (eds) Integrated wastewater management and valorization using algal cultures. Elsevier, Amsterdam, the Netherlands, pp 215-234

Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotech 70:313–321 DOI

Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Berlin/Heidelberg, Germany, pp 601–652 DOI

Borowitzka MA, Vonshak A (2017) Scaling up microalgal cultures to commercial scale. Eur J Phycol 52:407–418 DOI

Carneiro M, Ranglová K, Lakatos GE, Câmara Manoel JA, Grivalský T, Kozhan DM, Toribio A, Moreno J, Otero A, Varela J, Xavier Malcata F, Suárez Estrella F, Acién-Fernándéz FG, Molnár Z, Ördög V, Masojídek J (2021) Growth and bioactivity of two chlorophyte (Scenedesmus and Chlorella) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a nutrient source. Algal Res 56:102299 DOI

Chaudry S (2021) Integrating microalgae cultivation with wastewater treatment: a peek into economics. Appl Biochem Biotechnol 193:3395–3406 PubMed DOI

Enríquez S, Borowitzka MA (2010) The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, The Netherlands, pp 187–208 DOI

Figueroa FL, Jerez C, Korbee N (2013) Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Lat Am Aquatic Res 41:801–881 DOI

García-González J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061 PubMed DOI

Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92 DOI

Grivalský T, Ranglová K, Câmara Manoel JA, Lakatos GE, Lhotský R, Masojídek J (2019) Development of thin-layer cascades for microalgae cultivation: milestones (review). Folia Microbiol 64:603–614 DOI

Grivalský T, Ranglová K, Lakatos GE, Câmara Manoel JA, Černá T, Barceló-Villalobos M, Suárez Estrella F, Molnár Z, Ördög V, Masojídek J (2022) Bioactivity assessment, micropollutant and nutrient removal ability of Tetradesmus obliquus cultivated outdoors in centrate from municipal wastewater. J Appl Phycol 32:2955–2970 DOI

Havlik I, Lindner P, Scheper T, Reardon KF (2013) On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnol 31:406–414 PubMed DOI

Hofstraat JW, Peeters JC, Snel JFH, Geel C (1994) Simple determination of photosynthetic efficiency and photoinhibition of Dunaliella tertiolecta by saturating pulse measurements. Mar Ecol Prog Ser 103:187–196 DOI

Jerez CG, Navarro E, Malpartida I, Rico RM, Masojídek J, Abdala R, Figueroa FL (2014) Hydrodynamics and photosynthesis performance of Chlorella fusca grown in a thin-layer cascade (TLC) system. Aquat Biol 22:111–122 DOI

Jerez CG, Malapascua JR, Sergejevová M, Masojídek J, Figueroa FL (2016) Chlorella fusca (Chlorophyta) grown in thin-layer cascades: estimation of biomass productivity by in-vivo chlorophyll a fluorescence monitoring. Algal Res 17:21–30 DOI

Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112 DOI

Kulik MM (1995) The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Pathol 101:585–599 DOI

Kumar J, Ramla A, Mallick D, Mishra V (2021) An overview of some biopesticides and their importance in plant protection for commercial. Plants 10:1185 PubMed DOI PMC

Lívanský K (1993) Dependence of the apparent CO

Lívanský K, Doucha J (1996) CO DOI

Malapascua JRF, Jerez CG, Sergejevová M, Figueroa FL, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140 DOI

Malapascua JR, Ranglova K, Masojídek J (2019) Photosynthesis and growth kinetics of Chlorella vulgaris R-117 cultured in an internally LED-illuminated photobioreactor. Photosynthetica 57:103–112 DOI

Masojídek J, Torzillo G, Koblížek M (2013) Photosynthesis in microalgae. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd., Oxford, U.K., pp 21–36 DOI

Masojídek J, Kopecký J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317 PubMed DOI

Masojídek J, Vonshak A, Torzillo G (2011) Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications, vol 4. Springer. Dordrecht, The Netherlands, pp 277–292

Masojídek J, Papáček Š, Sergejevová M, Jirka V, Červený J, Kunc J, Korečko J, Verbovikova O, Kopecký J, Štys D, Torzillo G (2003) A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance. J Appl Phycol 15:239–248 DOI

Masojídek J, Ranglová K, Torzillo G, Celis Plá P, Rearte TA, Silva Benavides AM, Neori N, Gómez C, Caporgno MP, Alvarez Gómez F, Abdala R, Miazek K, Fávero Massocato T, Carmo da Silva J, Atzmüller R, Al Mahrouqu H, Suarez Estrella F, Lukeš M, Figueroa FL (2021) Changes in photosynthesis, growth and biomass composition in outdoor Chlorella g120 culture during the metabolic shift from heterotrophic to phototrophic cultivation regime. Algal Res 56:102303 DOI

Masojídek J, Ranglová K, Lakatos GE, Silva Benavides AM, Torzillo G (2021) Variables governing photosynthesis and growth in microalgae mass cultures (review). Processes 9:820 DOI

Masojídek J, Gómez-Serrano C, Ranglová K, Cicchi B, Encinas Bogeat A, Câmara Manoel JA, Sanchez Zurano A, Silva Benavides AM, Barceló Villalobos M, Robles Carnero VA, Ördög V, Gómez Pinchetti JL, Vörös L, Arbib Z, Rogalla F, Torzillo G, Figueroa FL, Acién-Fernándéz FG (2022) Photosynthesis monitoring in microalgae cultures grown on municipal wastewater as a nutrient source in large-scale outdoor bioreactors. Biology 11:1380 PubMed DOI PMC

Morales-Amaral M, Gómez-Serrano C, Acién FG, Fernández-Sevilla JM, Molina-Grima E (2015) Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Res 12:99–108 DOI

Moreno-Garcia L, Adjallé K, Barnabé S, Raghavan GSV (2017) Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renew Sust Energ Rev 76:493–506 DOI

Morillas-España A, Ruiz-Nieto Á, Lafarga T, Acién FG, Arbib Z, González-López CV (2022) Biostimulant capacity of Chlorella and Chlamydopodium species produced using wastewater and centrate. Biology 11:1086 PubMed DOI PMC

Ördög V, Stirk WA, van Staden J, Novák O, Strnad M (2004) Endogenous cytokinins in three genera of microalgae from Chlorophyta. J Phycol 40:88–95 DOI

Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237 DOI

Ranglová K, Lakatos GE, Câmara Manoel JA, Grivalský T, Suárez Estrella F, Acién Fernández FG, Molnár Z, Ördög V, Masojídek J (2021) Growth, biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res 53:102136 DOI

Ranglová K, Lakatos GE, Câmara Manoel JA, Grivalský T, Masojídek J (2019) Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements. Folia Microbiol 64:615–625 DOI

Rearte A, Celis-Plá P, Neori A, Masojídek J, Torzillo G, Gómez C, Silva Benavides AM, Álvarez-Gómez F, Abdala-Díaz R, Ranglová K, Caporgno M, Massocato TF, Carmo da Silva J, Al-Mahrouqi H, Atzmüller R, Figueroa FL (2021) Diurnal changes of dissolved oxygen gradients in the highly productive strain Chlorella vulgaris R117 cultured in thin-layer cascades: effect on photosynthetic activity. Algal Res 54:102176 DOI

Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A (2019) Microalgal biostimulants and biofertilisers in crop productions. Agronomy 9:192 DOI

Schreiber U, Endo T, Mi H, Asada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and Cyanobacteria. Plant Cell Physiol 36:873–882 DOI

Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62 PubMed DOI

Takács G, Gergely I, Molnár Z, Ördög V (2019) Plant biostimulating effects of the green alga Chlamydopodium fusiforme on winter wheat in field experiments. Book of abstract, 9

Torzillo G, Accolla P, Pinzani E, Masojídek J (1996) In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. J Appl Phycol 8:283–291 DOI

van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150 PubMed DOI

White S, Anandraj A, Bux F (2011) PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Biotechnol Resour 102:1675–1682

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...