Photosynthesis and biochemical characterization of the green alga Chlamydopodium fusiforme (Chlorophyta) grown in a thin-layer cascade
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Algatech Plus LO1416
Ministerstvo Školství, Mládeže a Tělovýchovy
Algenetics ATCZ15
Interreg Czech Republic-Austria programme
grant no. 727874
Horizon 2020
PubMed
37329434
DOI
10.1007/s43630-023-00444-y
PII: 10.1007/s43630-023-00444-y
Knihovny.cz E-zdroje
- Klíčová slova
- Biomass composition, Chlamydopodium fusiforme, Chlorophyll fluorescence, Microalgae, Photosynthesis,
- MeSH
- biomasa MeSH
- chlorofyl a MeSH
- Chlorophyta * metabolismus MeSH
- fotosyntéza MeSH
- kyslík metabolismus MeSH
- mikrořasy * metabolismus MeSH
- sacharidy MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a MeSH
- kyslík MeSH
- sacharidy MeSH
Photosynthesis, growth and biochemical composition of the biomass of the freshwater microalga Chlamydopodium fusiforme cultures outdoors in a thin-layer cascade were investigated. Gross oxygen production measured off-line in samples taken from the outdoor cultures was correlated with the electron transport rate estimated from chlorophyll a fluorescence measurements. According to photosynthesis measurements, a mean of 38.9 ± 10.3 mol of photons were required to release one mole of O2, which is 4.86 times higher than the theoretical value (8 photons per 1 O2). In contrast, according to the fluorescence measurements, a mean of 11.7 ± 0.74 mol of photons were required to release 1 mol of O2. These findings indicate that fluorescence-based photosynthesis rates may not be fully replace oxygen measurements to evaluate the performance of an outdoor culture. Daily gross biomass productivity was 0.3 g DW L-1 day-1 consistently for 4 days. Biomass productivity was strongly affected by the suboptimal concentration at which the culture was operated and by the respiration rate, as the substantial volume of culture was kept in the dark (about 45% of the total volume). As the cells were exposed to excessive light, the photosynthetic activity was mainly directed to the synthesis of carbohydrates in the biomass. In the morning, carbohydrate content decreased because of the dark respiration. Per contra, protein content in the biomass was lower at the end of the day and higher in the morning due to carbohydrate consumption by respiration. The data gathered in these trials are important for the future exploitation of Chlamydopodium fusiforme as a potential novel species in the field of microalgae for the production of bio-based compounds.
CNR Institute of Bioeconomy Sesto Fiorentino Florence Italy
Department of Chemical Engineering University of Almería Almería Spain
Department of Ecology Faculty of Sciences Malaga University Malaga Spain
Escuela de Biologia Universidad de Costa Rica San Pedro Costa Rica
Faculty of Agriculture University of South Bohemia České Budějovice Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Kumar, A., Guria, C., & Pathak, A. K. (2018). Optimal cultivation towards enhanced algae-biomass and lipid production using Dunaliella tertiolecta for biofuel application and potential CO DOI
Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd, A. E. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26, 709–722. https://doi.org/10.1016/j.sjbs.2017.11.003 PubMed DOI
Hu, J., Nagarajan, D., Zhang, Q., Chang, J.-S., & Lee, D.-J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36, 54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009 PubMed DOI
Touloupakis, E., Chini Zittelli, G., Silva Benavides, A. M., & Torzillo, G. (2022). Growth and photosynthetic performance of Nostoc linckia (formerly N calcicola) cells grown in BG11 and BG110 media. Photochemical & Photobiological Sciences. In press. https://doi.org/10.1007/s43630-022-00353-6 DOI
Morillas-España, A., Ruiz-Nieto, Á., Lafarga, T., Acién, G., Arbib, Z., & González-López, C. V. (2022). Biostimulant capacity of Chlorella and Chlamydopodium species produced using wastewater and centrate. Biology, 11, 1086. https://doi.org/10.3390/biology11071086 PubMed DOI PMC
Stirk, W. A., Ördög, V., Novák, O., Rolčík, J., Strnad, M., Bálint, P., & Staden, J. (2013). Auxin and cytokinin relationships in 24 microalgal strains. Journal of Phycology, 49, 459–467. https://doi.org/10.1111/jpy.12061 PubMed DOI
Goiris, K., Muylaert, K., De Cooman, L. (2015). Microalgae as a novel source of antioxidants for nutritional applications. In K Se-Kwo (Eds.), Handbook of Marine Microalgae, Biotechnology Advances (pp 269–280). Academic Press, Cambridge, MA, USA Doi: https://doi.org/10.1016/B978-0-12-800776-1.00017-0
Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477–1486. https://doi.org/10.1007/s10811-012-9804-6 DOI
Klejdus, B., Lijková, L., Plaza, M., Snόblová, M., & Stĕrbová, D. (2010). Hyphenated technique for the extraction and determination of isoflavones in algae: Ultrasonic-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. Journal of Chromatography A, 1217, 7956–7965. https://doi.org/10.1016/j.chroma.2010.07.020 PubMed DOI
Assunção, M. F. G., Amaral, R., Martins, C. B., Ferreira, J. D., Ressurreição, S., Santos, S. D., Varejão, J. M. T. B., & Santos, L. M. (2017). Screening microalgae as potential sources of antioxidants. Journal of Applied Phycology, 29, 865–877. https://doi.org/10.1007/s10811-016-0980-7 DOI
Sansone, C., & Brunet, C. (2019). Promises and challenges of microalgal antioxidant production. Antioxidants, 8(7), 199. https://doi.org/10.3390/antiox8070199 PubMed DOI PMC
Santhakumaran, P., Ayyappan, S. M., & Ray, J. G. (2020). Nutraceutical applications of twenty-five species of rapid-growing green-microalgae as indicated by their bacterial, antioxidants and mineral content. Algal Research. https://doi.org/10.1016/j.algal.2020.101878 DOI
Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52–63. https://doi.org/10.1016/j.algal.2014.09.002 DOI
Touloupakis, E., Tartari, G., Chini Zittelli, G., & Torzillo, G. (2020). Growth and photosynthetic performance of Chlamydopodium fusiforme cells cultivated in BG DOI
Masojídek, J., Štěrbová, K., Serrano, C. G., da Silva, J. C., Grivalský, T., Figueroa, F. L., & Fernández, F. G. A. (2023). Photosynthetic performance of Chlamydopodium (Chlorophyta) cultures grown in outdoor bioreactors. Applied Microbiology and Biotechnology, 107, 2249–2262. https://doi.org/10.1007/s00253-023-12428-0 PubMed DOI
Zittelli, G. C., Silva Benavides, A. M., Silovic, T., Ranglová, K., Masojídek, J., Cicchi, B., Faraloni, C., Touloupakis, E., & Torzillo, G. (2022). Productivity and nutrient removal by the microalga Chlamydopodium fusiforme grown outdoors in BG-11 and piggery wastewater. Frontiers in Marine Sciences, 9, 1043123. https://doi.org/10.3389/fmars.2022.1043123 DOI
Masojidek, J., Kopecky, J., Giannelli, L., & Torzillo, G. (2011). Productivity correlated to photochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. Journal of Industrial Microbiology and Biotechnology, 38, 307–317. https://doi.org/10.1007/s10295-010-0774-x PubMed DOI
Jerez, C. G., Malapascua, R., Sergejevová, M., Masojidek, J., & Figueroa, F. L. (2016). Chlorella fusca (Chlorophyta) grown in thin-layer cascades: Estimation of biomass productivity by in-vivo chlorophyll a fluorescence monitoring. Algal Research, 17, 21–30. https://doi.org/10.1016/j.algal.2016.04.010 DOI
Figueroa, F. L., Conde-Álvarez, R., & Gόmez, I. (2003). Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynthesis Research, 75, 259–275. https://doi.org/10.1023/A:1023936313544 PubMed DOI
Blache, U., Jakob, T., Su, W., & Wilhelm, C. (2011). The impact of cell-specific absorption properties on the correlation of electron transport rates measured by chlorophyll fluorescence and photosynthetic oxygen evolution in planktonic algae. Plant Physiology and Biochemistry, 49, 801–808. https://doi.org/10.1016/j.plaphy.2011.04.010 PubMed DOI
Carr, H., & Björk, M. (2003). A methodological comparison of photosynthetic oxygen evolution and estimated electron transport rate in tropical Ulva (Chlorophyceae) species under different light and inorganic carbon conditions. Journal of Phycology, 39, 1125–1131. https://doi.org/10.1111/j.0022-3646.2003.02-077.x DOI
Sergejevová, M., Malapascua, J. R., Kopecký, J., & Masojídek, J. (2015). Photobioreactors with internal illumination. In R. Bajpai, A. Prokop, & M. Zappi (Eds.), Algal Biorefinery (vol 2, pp. 237–262) Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-20200-6-6
Grivalský, T., Ranglová, K., Câmara Manoel, J. A., Lakatos, G. E., Lhotský, R., & Masojídek, J. (2019). Development of thin-layer cascades for microalgae cultivation: Milestones (review). Folia Microbiologica, 64, 603–614. https://doi.org/10.1007/s12223-019-00739-7 PubMed DOI
Touloupakis, E., Cicchi, B., & Torzillo, G. (2015). A bioenergetic assessment of photosynthetic growth of Synechocystis sp PCC 6803 in continuous cultures. Biotechnology for Biofuels. https://doi.org/10.1186/s13068-015-0319-7 PubMed DOI PMC
Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1 DOI
Eilers, P. H. C., & Peeters, J. C. H. (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42, 199–215. https://doi.org/10.1016/0304-3800(88)90057-9 DOI
Kromkamp, J. C., Dijkman, N. A., Peene, J., Simis, S. G. H., & Gons, H. J. (2008). Estimating phytoplankton primary production in Lake IJsselmeer (The Netherlands) using variable fluorescence (PAM-FRRF) and C-uptake techniques. European Journal of Phycology, 43, 327–344. https://doi.org/10.1080/09670260802080895 DOI
Fisher, T., Minnaard, J., & Dubinsky, Z. (1996). Photoacclimation in the marine alga Nannochloropsis sp. (Eustigmatophyte): A kinetic study. Journal of Plankton Research, 18, 1797–1818. https://doi.org/10.1093/plankt/18.10.1797 DOI
Kromkamp, J., & Forster, R. M. (2003). The use of variable fluorescence measurements in aquatic ecosystems: Differences between multiple and single turnover measuring protocols and suggested terminology. European Journal of Phycology, 38, 103–112. https://doi.org/10.1080/0967026031000094094 DOI
Folin, O., & Ciocalteau, V. (1927). On tyrosine and tryptophane determinations in proteins. Journal of Biological Chemistry, 73, 627–648. DOI
Celis-Plá, P., Bouzon, Z. L., Hall-Spencer, J. M., Schmidt, E. C., Korbee, N., & Figueroa, F. L. (2016). Seasonal biochemical and photophysiological responses in the intertidal macroalga cystoseira tamariscifolia (Ochrophyta). Marine Environmental Research, 115, 89–97. https://doi.org/10.1016/j.marenvres.2015.11.014 PubMed DOI
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3 PubMed DOI
Alvarez-Gómez, F., Bouzon, Z., Korbee, N., Celis-Plá, P., Schmidt, E., & Figueroa, F. L. (2017). Combined effects of UVR and nutrients on cell ultrastructure, photosynthesis, and biochemistry in Gracilariopsis longissima (Gracilariales, Rhodophyta). Algal Research, 26, 190–202. https://doi.org/10.1016/j.algal.2017.07.022 DOI
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999 PubMed DOI
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. https://doi.org/10.1021/ac60111a017 DOI
Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., & Yang, J. W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077 PubMed DOI
Underwood, A. J. (1997). Experiments in Ecology: Their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, USA. https://doi.org/10.2134/jeq1998.00472425002700010038x DOI
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675. https://doi.org/10.1016/j.jfca.2006.01.003 DOI
Baker, N. R. (2008). Chlorphyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 PubMed DOI
Ippoliti, D., Gómez, C., del Mar Morales-Amaral, M., Pistocchi, R., Fernández-Sevilla, J. M., & Acién, F. G. (2016). Modeling of photosynthesis and respiration rate for Isochrysis galbana (T-Iso) and its influence on the production of this strain. Bioresource Technology, 203, 71–79. https://doi.org/10.1016/j.biortech.2015.12.050 PubMed DOI
Badger, M. R., Andrews, T. J., Whitney, S. M., Ludwig, M., Yellowlees, D. C., Leggat, W., & Price, G. D. (1998). The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO DOI
Wingler, A., Lea, P. J., Quick, W. P., & Leegood, R. C. (2000). Photorespiration: Metabolic pathways and their role in stress protection. Philosophical Transactions of the Royal Society B: Biological Sciences, 355, 1517–1529. https://doi.org/10.1098/rstb.2000.0712 DOI
Demmig-adams, B., Gyozo, G., Adams, W., Govindjee. (2014) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, Springer, Dordrecht, The Netherlands
Masojidek, J., Torzillo, G., Koblizek, M., Kopecky, J., Bernardini, P., Sacchi, A., & Komenda, J. (1999). Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: Changes in chlorophyll fluorescence quenching and xanthophyll cycle. Planta, 209, 126–135. https://doi.org/10.1007/s004250050614 PubMed DOI
Masojídek, J., Kopecký, J., Koblízek, M., & Torzillo, G. (2004). The xanthophyll cycle in green algae (Chlorophyta): Its role in the photosynthetic apparatus. Plant Biology (Stuttg), 6, 342–349. https://doi.org/10.1055/s-2004-820884 DOI
Bonente, G., Pippa, S., Castellano, S., Bassi, R., & Ballottari, M. (2012). Acclimation of Chlamydomonas reinhardtii to different growth irradiances. Journal of Biological Chemistry, 287, 5833–5847. https://doi.org/10.1074/jbc.M111.304279 PubMed DOI
Doucha, J., & Lívanský, K. (2006). Productivity, CO DOI
Wan, M.-X., Wang, R.-M., Rosenberg, J. N., Nie, Z.-Y., Kobayashi, N., Oyler, G. A., & Betenbaugh, M. J. (2012). Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnology and Bioengineering, 109(8), 1958–1964. https://doi.org/10.1002/bit.24477 PubMed DOI
Edmundson, S. J., & Huesemann, M. H. (2015). The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp. Algal Research, 12, 470–476. https://doi.org/10.1016/j.algal.2015.10.012 DOI
Carneiro, M., Cicchi, B., Maia, I. B., Pereira, H., Chini Zittelli, G., Varela, J., Malcata, F. X., & Torzillo, G. (2020). Effect of temperature on growth, photosynthesis and biochemical composition of Nannochloropsis oceanica, grown outdoors in tubular photobioreactors. Algal Research. https://doi.org/10.1016/j.algal.2020.101923 DOI
Torzillo, G., Sacchi, A., Materassi, R., & Richmond, A. (1991). Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Journal of Applied Phycology, 3, 103–109. https://doi.org/10.1007/BF00003691 DOI
Smerilli, A., Balzano, S., Maselli, M., Blasio, M., Orefice, I., Galasso, C., Sansone, C., & Brunet, C. (2019). Antioxidant and photoprotection networking in the coastal diatom Skeletonema marinoi. Antioxidants, 8, 154–172. https://doi.org/10.3390/antiox8060154 PubMed DOI PMC
Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155, 93–100. https://doi.org/10.1104/pp.110.166181 PubMed DOI