Photosynthesis and biochemical characterization of the green alga Chlamydopodium fusiforme (Chlorophyta) grown in a thin-layer cascade

. 2023 Sep ; 22 (9) : 2231-2245. [epub] 20230617

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37329434

Grantová podpora
Algatech Plus LO1416 Ministerstvo Školství, Mládeže a Tělovýchovy
Algenetics ATCZ15 Interreg Czech Republic-Austria programme
grant no. 727874 Horizon 2020

Odkazy

PubMed 37329434
DOI 10.1007/s43630-023-00444-y
PII: 10.1007/s43630-023-00444-y
Knihovny.cz E-zdroje

Photosynthesis, growth and biochemical composition of the biomass of the freshwater microalga Chlamydopodium fusiforme cultures outdoors in a thin-layer cascade were investigated. Gross oxygen production measured off-line in samples taken from the outdoor cultures was correlated with the electron transport rate estimated from chlorophyll a fluorescence measurements. According to photosynthesis measurements, a mean of 38.9 ± 10.3 mol of photons were required to release one mole of O2, which is 4.86 times higher than the theoretical value (8 photons per 1 O2). In contrast, according to the fluorescence measurements, a mean of 11.7 ± 0.74 mol of photons were required to release 1 mol of O2. These findings indicate that fluorescence-based photosynthesis rates may not be fully replace oxygen measurements to evaluate the performance of an outdoor culture. Daily gross biomass productivity was 0.3 g DW L-1 day-1 consistently for 4 days. Biomass productivity was strongly affected by the suboptimal concentration at which the culture was operated and by the respiration rate, as the substantial volume of culture was kept in the dark (about 45% of the total volume). As the cells were exposed to excessive light, the photosynthetic activity was mainly directed to the synthesis of carbohydrates in the biomass. In the morning, carbohydrate content decreased because of the dark respiration. Per contra, protein content in the biomass was lower at the end of the day and higher in the morning due to carbohydrate consumption by respiration. The data gathered in these trials are important for the future exploitation of Chlamydopodium fusiforme as a potential novel species in the field of microalgae for the production of bio-based compounds.

Zobrazit více v PubMed

Kumar, A., Guria, C., & Pathak, A. K. (2018). Optimal cultivation towards enhanced algae-biomass and lipid production using Dunaliella tertiolecta for biofuel application and potential CO DOI

Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd, A. E. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26, 709–722. https://doi.org/10.1016/j.sjbs.2017.11.003 PubMed DOI

Hu, J., Nagarajan, D., Zhang, Q., Chang, J.-S., & Lee, D.-J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36, 54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009 PubMed DOI

Touloupakis, E., Chini Zittelli, G., Silva Benavides, A. M., & Torzillo, G. (2022). Growth and photosynthetic performance of Nostoc linckia (formerly N calcicola) cells grown in BG11 and BG110 media. Photochemical & Photobiological Sciences. In press. https://doi.org/10.1007/s43630-022-00353-6 DOI

Morillas-España, A., Ruiz-Nieto, Á., Lafarga, T., Acién, G., Arbib, Z., & González-López, C. V. (2022). Biostimulant capacity of Chlorella and Chlamydopodium species produced using wastewater and centrate. Biology, 11, 1086. https://doi.org/10.3390/biology11071086 PubMed DOI PMC

Stirk, W. A., Ördög, V., Novák, O., Rolčík, J., Strnad, M., Bálint, P., & Staden, J. (2013). Auxin and cytokinin relationships in 24 microalgal strains. Journal of Phycology, 49, 459–467. https://doi.org/10.1111/jpy.12061 PubMed DOI

Goiris, K., Muylaert, K., De Cooman, L. (2015). Microalgae as a novel source of antioxidants for nutritional applications. In K Se-Kwo (Eds.), Handbook of Marine Microalgae, Biotechnology Advances (pp 269–280). Academic Press, Cambridge, MA, USA Doi: https://doi.org/10.1016/B978-0-12-800776-1.00017-0

Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24, 1477–1486. https://doi.org/10.1007/s10811-012-9804-6 DOI

Klejdus, B., Lijková, L., Plaza, M., Snόblová, M., & Stĕrbová, D. (2010). Hyphenated technique for the extraction and determination of isoflavones in algae: Ultrasonic-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. Journal of Chromatography A, 1217, 7956–7965. https://doi.org/10.1016/j.chroma.2010.07.020 PubMed DOI

Assunção, M. F. G., Amaral, R., Martins, C. B., Ferreira, J. D., Ressurreição, S., Santos, S. D., Varejão, J. M. T. B., & Santos, L. M. (2017). Screening microalgae as potential sources of antioxidants. Journal of Applied Phycology, 29, 865–877. https://doi.org/10.1007/s10811-016-0980-7 DOI

Sansone, C., & Brunet, C. (2019). Promises and challenges of microalgal antioxidant production. Antioxidants, 8(7), 199. https://doi.org/10.3390/antiox8070199 PubMed DOI PMC

Santhakumaran, P., Ayyappan, S. M., & Ray, J. G. (2020). Nutraceutical applications of twenty-five species of rapid-growing green-microalgae as indicated by their bacterial, antioxidants and mineral content. Algal Research. https://doi.org/10.1016/j.algal.2020.101878 DOI

Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52–63. https://doi.org/10.1016/j.algal.2014.09.002 DOI

Touloupakis, E., Tartari, G., Chini Zittelli, G., & Torzillo, G. (2020). Growth and photosynthetic performance of Chlamydopodium fusiforme cells cultivated in BG DOI

Masojídek, J., Štěrbová, K., Serrano, C. G., da Silva, J. C., Grivalský, T., Figueroa, F. L., & Fernández, F. G. A. (2023). Photosynthetic performance of Chlamydopodium (Chlorophyta) cultures grown in outdoor bioreactors. Applied Microbiology and Biotechnology, 107, 2249–2262. https://doi.org/10.1007/s00253-023-12428-0 PubMed DOI

Zittelli, G. C., Silva Benavides, A. M., Silovic, T., Ranglová, K., Masojídek, J., Cicchi, B., Faraloni, C., Touloupakis, E., & Torzillo, G. (2022). Productivity and nutrient removal by the microalga Chlamydopodium fusiforme grown outdoors in BG-11 and piggery wastewater. Frontiers in Marine Sciences, 9, 1043123. https://doi.org/10.3389/fmars.2022.1043123 DOI

Masojidek, J., Kopecky, J., Giannelli, L., & Torzillo, G. (2011). Productivity correlated to photochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. Journal of Industrial Microbiology and Biotechnology, 38, 307–317. https://doi.org/10.1007/s10295-010-0774-x PubMed DOI

Jerez, C. G., Malapascua, R., Sergejevová, M., Masojidek, J., & Figueroa, F. L. (2016). Chlorella fusca (Chlorophyta) grown in thin-layer cascades: Estimation of biomass productivity by in-vivo chlorophyll a fluorescence monitoring. Algal Research, 17, 21–30. https://doi.org/10.1016/j.algal.2016.04.010 DOI

Figueroa, F. L., Conde-Álvarez, R., & Gόmez, I. (2003). Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynthesis Research, 75, 259–275. https://doi.org/10.1023/A:1023936313544 PubMed DOI

Blache, U., Jakob, T., Su, W., & Wilhelm, C. (2011). The impact of cell-specific absorption properties on the correlation of electron transport rates measured by chlorophyll fluorescence and photosynthetic oxygen evolution in planktonic algae. Plant Physiology and Biochemistry, 49, 801–808. https://doi.org/10.1016/j.plaphy.2011.04.010 PubMed DOI

Carr, H., & Björk, M. (2003). A methodological comparison of photosynthetic oxygen evolution and estimated electron transport rate in tropical Ulva (Chlorophyceae) species under different light and inorganic carbon conditions. Journal of Phycology, 39, 1125–1131. https://doi.org/10.1111/j.0022-3646.2003.02-077.x DOI

Sergejevová, M., Malapascua, J. R., Kopecký, J., & Masojídek, J. (2015). Photobioreactors with internal illumination. In R. Bajpai, A. Prokop, & M. Zappi (Eds.), Algal Biorefinery (vol 2, pp. 237–262) Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-20200-6-6

Grivalský, T., Ranglová, K., Câmara Manoel, J. A., Lakatos, G. E., Lhotský, R., & Masojídek, J. (2019). Development of thin-layer cascades for microalgae cultivation: Milestones (review). Folia Microbiologica, 64, 603–614. https://doi.org/10.1007/s12223-019-00739-7 PubMed DOI

Touloupakis, E., Cicchi, B., & Torzillo, G. (2015). A bioenergetic assessment of photosynthetic growth of Synechocystis sp PCC 6803 in continuous cultures. Biotechnology for Biofuels. https://doi.org/10.1186/s13068-015-0319-7 PubMed DOI PMC

Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1 DOI

Eilers, P. H. C., & Peeters, J. C. H. (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42, 199–215. https://doi.org/10.1016/0304-3800(88)90057-9 DOI

Kromkamp, J. C., Dijkman, N. A., Peene, J., Simis, S. G. H., & Gons, H. J. (2008). Estimating phytoplankton primary production in Lake IJsselmeer (The Netherlands) using variable fluorescence (PAM-FRRF) and C-uptake techniques. European Journal of Phycology, 43, 327–344. https://doi.org/10.1080/09670260802080895 DOI

Fisher, T., Minnaard, J., & Dubinsky, Z. (1996). Photoacclimation in the marine alga Nannochloropsis sp. (Eustigmatophyte): A kinetic study. Journal of Plankton Research, 18, 1797–1818. https://doi.org/10.1093/plankt/18.10.1797 DOI

Kromkamp, J., & Forster, R. M. (2003). The use of variable fluorescence measurements in aquatic ecosystems: Differences between multiple and single turnover measuring protocols and suggested terminology. European Journal of Phycology, 38, 103–112. https://doi.org/10.1080/0967026031000094094 DOI

Folin, O., & Ciocalteau, V. (1927). On tyrosine and tryptophane determinations in proteins. Journal of Biological Chemistry, 73, 627–648. DOI

Celis-Plá, P., Bouzon, Z. L., Hall-Spencer, J. M., Schmidt, E. C., Korbee, N., & Figueroa, F. L. (2016). Seasonal biochemical and photophysiological responses in the intertidal macroalga cystoseira tamariscifolia (Ochrophyta). Marine Environmental Research, 115, 89–97. https://doi.org/10.1016/j.marenvres.2015.11.014 PubMed DOI

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3 PubMed DOI

Alvarez-Gómez, F., Bouzon, Z., Korbee, N., Celis-Plá, P., Schmidt, E., & Figueroa, F. L. (2017). Combined effects of UVR and nutrients on cell ultrastructure, photosynthesis, and biochemistry in Gracilariopsis longissima (Gracilariales, Rhodophyta). Algal Research, 26, 190–202. https://doi.org/10.1016/j.algal.2017.07.022 DOI

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999 PubMed DOI

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. https://doi.org/10.1021/ac60111a017 DOI

Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., & Yang, J. W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077 PubMed DOI

Underwood, A. J. (1997). Experiments in Ecology: Their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, USA. https://doi.org/10.2134/jeq1998.00472425002700010038x DOI

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675. https://doi.org/10.1016/j.jfca.2006.01.003 DOI

Baker, N. R. (2008). Chlorphyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 PubMed DOI

Ippoliti, D., Gómez, C., del Mar Morales-Amaral, M., Pistocchi, R., Fernández-Sevilla, J. M., & Acién, F. G. (2016). Modeling of photosynthesis and respiration rate for Isochrysis galbana (T-Iso) and its influence on the production of this strain. Bioresource Technology, 203, 71–79. https://doi.org/10.1016/j.biortech.2015.12.050 PubMed DOI

Badger, M. R., Andrews, T. J., Whitney, S. M., Ludwig, M., Yellowlees, D. C., Leggat, W., & Price, G. D. (1998). The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO DOI

Wingler, A., Lea, P. J., Quick, W. P., & Leegood, R. C. (2000). Photorespiration: Metabolic pathways and their role in stress protection. Philosophical Transactions of the Royal Society B: Biological Sciences, 355, 1517–1529. https://doi.org/10.1098/rstb.2000.0712 DOI

Demmig-adams, B., Gyozo, G., Adams, W., Govindjee. (2014) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, Springer, Dordrecht, The Netherlands

Masojidek, J., Torzillo, G., Koblizek, M., Kopecky, J., Bernardini, P., Sacchi, A., & Komenda, J. (1999). Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: Changes in chlorophyll fluorescence quenching and xanthophyll cycle. Planta, 209, 126–135. https://doi.org/10.1007/s004250050614 PubMed DOI

Masojídek, J., Kopecký, J., Koblízek, M., & Torzillo, G. (2004). The xanthophyll cycle in green algae (Chlorophyta): Its role in the photosynthetic apparatus. Plant Biology (Stuttg), 6, 342–349. https://doi.org/10.1055/s-2004-820884 DOI

Bonente, G., Pippa, S., Castellano, S., Bassi, R., & Ballottari, M. (2012). Acclimation of Chlamydomonas reinhardtii to different growth irradiances. Journal of Biological Chemistry, 287, 5833–5847. https://doi.org/10.1074/jbc.M111.304279 PubMed DOI

Doucha, J., & Lívanský, K. (2006). Productivity, CO DOI

Wan, M.-X., Wang, R.-M., Rosenberg, J. N., Nie, Z.-Y., Kobayashi, N., Oyler, G. A., & Betenbaugh, M. J. (2012). Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnology and Bioengineering, 109(8), 1958–1964. https://doi.org/10.1002/bit.24477 PubMed DOI

Edmundson, S. J., & Huesemann, M. H. (2015). The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp. Algal Research, 12, 470–476. https://doi.org/10.1016/j.algal.2015.10.012 DOI

Carneiro, M., Cicchi, B., Maia, I. B., Pereira, H., Chini Zittelli, G., Varela, J., Malcata, F. X., & Torzillo, G. (2020). Effect of temperature on growth, photosynthesis and biochemical composition of Nannochloropsis oceanica, grown outdoors in tubular photobioreactors. Algal Research. https://doi.org/10.1016/j.algal.2020.101923 DOI

Torzillo, G., Sacchi, A., Materassi, R., & Richmond, A. (1991). Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Journal of Applied Phycology, 3, 103–109. https://doi.org/10.1007/BF00003691 DOI

Smerilli, A., Balzano, S., Maselli, M., Blasio, M., Orefice, I., Galasso, C., Sansone, C., & Brunet, C. (2019). Antioxidant and photoprotection networking in the coastal diatom Skeletonema marinoi. Antioxidants, 8, 154–172. https://doi.org/10.3390/antiox8060154 PubMed DOI PMC

Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155, 93–100. https://doi.org/10.1104/pp.110.166181 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...