State transitions
Dotaz
Zobrazit nápovědu
MAIN CONCLUSION: The absence of state transitions in a Nt(Hn) cybrid is due to a cleavage of the threonine residue from the misprocessed N-terminus of the LHCII polypeptides. The cooperation between the nucleus and chloroplast genomes is essential for plant photosynthetic fitness. The rapid and specific interactions between nucleus-encoded and chloroplast-encoded proteins are under intense investigation with potential for applications in agriculture and renewable energy technology. Here, we present a novel model for photosynthesis research in which alien henbane (Hyoscyamus niger) chloroplasts function on the nuclear background of a tobacco (Nicotiana tabacum). The result of this coupling is a cytoplasmic hybrid (cybrid) with inhibited state transitions-a mechanism responsible for balancing energy absorption between photosystems. Protein analysis showed differences in the LHCII composition of the cybrid plants. SDS-PAGE analysis revealed a novel banding pattern in the cybrids with at least one additional 'LHCII' band compared to the wild-type parental species. Proteomic work suggested that the N-terminus of at least some of the cybrid Lhcb proteins was missing. These findings provide a mechanistic explanation for the lack of state transitions-the N-terminal truncation of the Lhcb proteins in the cybrid included the threonine residue that is phosphorylated/dephosphorylated in order to trigger state transitions and therefore crucial energy balancing mechanism in plants.
- MeSH
- buněčné jádro metabolismus MeSH
- chloroplasty metabolismus MeSH
- fosforylace MeSH
- fotosyntéza MeSH
- fotosystém II (proteinový komplex) genetika metabolismus MeSH
- genom chloroplastový genetika MeSH
- genom rostlinný genetika MeSH
- proteomika MeSH
- světlosběrné proteinové komplexy genetika metabolismus MeSH
- tabák genetika fyziologie MeSH
- threonin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions.
Cyanobacteria have developed responses to maintain the balance between the energy absorbed and the energy used in different pigment-protein complexes. One of the relatively rapid (a few minutes) responses is activated when the cells are exposed to high light intensities. This mechanism thermally dissipates excitation energy at the level of the phycobilisome (PB) antenna before it reaches the reaction center. When exposed to low intensities of light that modify the redox state of the plastoquinone pool, the so-called state transitions redistribute energy between photosystem I and II. Experimental techniques to investigate the underlying mechanisms of these responses, such as pulse-amplitude modulated fluorometry, are based on spectrally integrated signals. Previously, a spectrally resolved fluorometry method has been introduced to preserve spectral information. The analysis method introduced in this work allows to interpret SRF data in terms of species-associated spectra of open/closed reaction centers (RCs), (un)quenched PB and state 1 versus state 2. Thus, spectral differences in the time-dependent fluorescence signature of photosynthetic organisms under varying light conditions can be traced and assigned to functional emitting species leading to a number of interpretations of their molecular origins. In particular, we present evidence that state 1 and state 2 correspond to different states of the PB-PSII-PSI megacomplex.
... Electronic Reserve: A Luture in Transition? ... ... Southern Region 223 -- Western Region 224 -- Northwest Region 226 -- New England Region 227 -- Middle States ...
Haworth Information Press
xx, 279 s. : tab., grafy ; 21 cm
- Klíčová slova
- elektronické zdroje, elektronické publikování,
- MeSH
- knihovny trendy MeSH
- periodika jako téma trendy MeSH
- publikace trendy MeSH
- seriály trendy MeSH
- Publikační typ
- sborníky MeSH
- Konspekt
- Knihovnictví. Informatika
- NLK Obory
- knihovnictví, informační věda a muzeologie
The mitochondrial permeability transition pore (MPTP) is a calcium-dependent, ion non-selective membrane pore with a wide range of functions. Although the MPTP has been studied for more than 50 years, its molecular structure remains unclear. Short-term (reversible) opening of the MPTP protects cells from oxidative damage and enables the efflux of Ca2+ ions from the mitochondrial matrix and cell signaling. However, long-term (irreversible) opening induces processes leading to cell death. Ca2+ ions, reactive oxygen species, and changes in mitochondrial membrane potential regulate pore opening. The sensitivity of the pore to Ca2+ ions changes as an organism ages, and MPTP opening plays a key role in the pathogenesis of many diseases. Most studies of the MPTP have focused on elucidating its molecular structure. However, understanding the mechanisms that will inhibit the MPTP may improve the treatment of diseases associated with its opening. To evaluate the functional state of the MPTP and its inhibitors, it is therefore necessary to use appropriate methods that provide reproducible results across laboratories. This review summarizes our current knowledge of the function and regulation of the MPTP. The latter part of the review introduces two optimized methods for evaluating the functional state of the pore under standardized conditions.
Gene expression databases, acquired by proteomics and transcriptomics, describe physiological and developmental programs at the systems level. Here we analyze proteosynthetic profiles in a bacterium undergoing defined metabolic changes. Streptomyces coelicolor cultured in a defined liquid medium displays four distinct patterns of gene expression associated with growth on glutamate, diauxic transition, and growth on maltose and ammonia that terminates by starvation for nitrogen and entry into stationary phase. Principal component and fuzzy cluster analyses of the proteome database of 935 protein spot profiles revealed principal kinetic patterns. Online linkage of the proteome database (SWICZ) to a protein-function database (KEGG) revealed limited correlations between expression profiles and metabolic pathway activities. Proteins belonging to principal metabolic pathways defined characteristic kinetic profiles correlated with the physiological state of the culture. These analyses supported the concept that metabolic flux was regulated not by individual enzymes but rather by groups of enzymes whose synthesis responded to changes in nutritional conditions. Higher-level regulation is reflected by the distribution of all kinetic profiles into only nine groups. The observation that enzymes representing principal metabolic pathways displayed their own distinctive average kinetic profiles suggested that expression of a "high-flux backbone" may dominate regulation of metabolic flux.
- MeSH
- 2D gelová elektroforéza MeSH
- bakteriální proteiny biosyntéza MeSH
- čipová analýza proteinů metody MeSH
- dusík nedostatek MeSH
- financování organizované MeSH
- fyziologická adaptace MeSH
- kyselina glutamová farmakologie MeSH
- maltosa farmakologie MeSH
- methionin metabolismus MeSH
- proteom MeSH
- proteosyntéza MeSH
- radioizotopy síry MeSH
- regulace genové exprese u bakterií MeSH
- signální transdukce MeSH
- sladidla farmakologie MeSH
- Streptomyces coelicolor fyziologie MeSH
- Publikační typ
- srovnávací studie MeSH
In dark-adapted plants and algae, chlorophyll a fluorescence induction peaks within 1s after irradiation due to well documented photochemical and non-photochemical processes. Here we show that the much slower fluorescence rise in cyanobacteria (the so-called "S to M rise" in tens of seconds) is due to state 2 to state 1 transition. This has been demonstrated in particular for Synechocystis PCC6803, using its RpaC(-) mutant (locked in state 1) and its wild-type cells kept in hyperosmotic suspension (locked in state 2). In both cases, the inhibition of state changes correlates with the disappearance of the S to M fluorescence rise, confirming its assignment to the state 2 to state 1 transition. The general physiological relevance of the SM rise is supported by its occurrence in several cyanobacterial strains: Synechococcus (PCC 7942, WH 5701) and diazotrophic single cell cyanobacterium (Cyanothece sp. ATCC 51142). We also show here that the SM fluorescence rise, and also the state transition changes are less prominent in filamentous diazotrophic cyanobacterium Nostoc sp. (PCC 7120) and absent in phycobilisome-less cyanobacterium Prochlorococcus marinus PCC 9511. Surprisingly, it is also absent in the phycobiliprotein rod containing Acaryochloris marina (MBIC 11017). All these results show that the S to M fluorescence rise reflects state 2 to state 1 transition in cyanobacteria with phycobilisomes formed by rods and core parts. We show that the pronounced SM fluorescence rise may reflect a protective mechanism for excess energy dissipation in those cyanobacteria (e.g. in Synechococcus PCC 7942) that are less efficient in other protective mechanisms, such as blue light induced non-photochemical quenching. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
- MeSH
- fluorescence MeSH
- sinice chemie MeSH
- Synechocystis chemie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: Our goal was to model the temporal dynamics of sleep-wake transitions, represented by transitions between rest and activity obtained from actigraphic data, in patients with bipolar disorder using a probabilistic state transition approach. METHODS: We collected actigraphic data for 14 days from 20 euthymic patients with bipolar disorder, who had been characterized clinically, demographically, and with respect to their circadian preferences (chronotype). We processed each activity record to generate a series of transitions in both directions between the states of rest (R) and activity (A) and plotted the estimated transition probabilities (pRA and pAR). Each 24-hour period was also divided into a rest phase consisting of the eight consecutive least active hours in each day and an active phase consisting of the 16 consecutive most active hours in each day. We then calculated separate transition probabilities for each of these phases for each participant. We subsequently modeled the rest phase data to find the best fit for rest-activity transitions using maximum likelihood estimation. We also examined the association of transition probabilities with clinical and demographic variables. RESULTS: The best-fit model for rest-activity transitions during the rest phase was a mixture (bimodal) of exponential functions. Of those patients with rapid cycling, 75% had an evening-type chronotype. Patients with bipolar II disorder taking antidepressants had a lower probability of transitioning back to rest than those not on antidepressants [mean ± SD = 0.050 ± 0.006 versus 0.141 ± 0.058, F(1,15) = 3.40, p < 0.05]. CONCLUSIONS: The dynamics of transitions between rest and activity in bipolar disorder can be accounted for by a mixture (bimodal) of exponential functions. Patients taking antidepressants had a reduced probability of sustaining and returning to sleep.
- MeSH
- aktigrafie metody MeSH
- antidepresiva farmakologie MeSH
- bdění fyziologie MeSH
- bipolární porucha * farmakoterapie patofyziologie psychologie MeSH
- cirkadiánní hodiny * účinky léků fyziologie MeSH
- cirkadiánní rytmus účinky léků fyziologie MeSH
- dospělí MeSH
- lidé MeSH
- odpočinek * fyziologie psychologie MeSH
- pravděpodobnostní funkce MeSH
- spánek * účinky léků fyziologie MeSH
- teoretické modely MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite the benefits of phototrophy, many algae have lost photosynthesis and have converted back to heterotrophy. Parasitism is a heterotrophic strategy, with apicomplexans being among the most devastating parasites for humans. The presence of a nonphotosynthetic plastid in apicomplexan parasites suggests their phototrophic ancestry. The discovery of related phototrophic chromerids has unlocked the possibility to study the transition between phototrophy and parasitism in the Apicomplexa. The chromerid Chromera velia can live as an intracellular parasite in coral larvae as well as a free-living phototroph, combining phototrophy and parasitism in what I call photoparasitism. Since early-branching apicomplexans live extracellularly, their evolution from an intracellular symbiont is unlikely. In this opinion article I discuss possible evolutionary trajectories from an extracellular photoparasite to an obligatory apicomplexan parasite.
In a large family of Czech origin, we mapped a locus for an autosomal-dominant corneal endothelial dystrophy, posterior polymorphous corneal dystrophy 4 (PPCD4), to 8q22.3-q24.12. Whole-genome sequencing identified a unique variant (c.20+544G>T) in this locus, within an intronic regulatory region of GRHL2. Targeted sequencing identified the same variant in three additional previously unsolved PPCD-affected families, including a de novo occurrence that suggests this is a recurrent mutation. Two further unique variants were identified in intron 1 of GRHL2 (c.20+257delT and c.20+133delA) in unrelated PPCD-affected families. GRHL2 is a transcription factor that suppresses epithelial-to-mesenchymal transition (EMT) and is a direct transcriptional repressor of ZEB1. ZEB1 mutations leading to haploinsufficiency cause PPCD3. We previously identified promoter mutations in OVOL2, a gene not normally expressed in the corneal endothelium, as the cause of PPCD1. OVOL2 drives mesenchymal-to-epithelial transition (MET) by directly inhibiting EMT-inducing transcription factors, such as ZEB1. Here, we demonstrate that the GRHL2 regulatory variants identified in PPCD4-affected individuals induce increased transcriptional activity in vitro. Furthermore, although GRHL2 is not expressed in corneal endothelial cells in control tissue, we detected GRHL2 in the corneal "endothelium" in PPCD4 tissue. These cells were also positive for epithelial markers E-Cadherin and Cytokeratin 7, indicating they have transitioned to an epithelial-like cell type. We suggest that mutations inducing MET within the corneal endothelium are a convergent pathogenic mechanism leading to dysfunction of the endothelial barrier and disease.
- MeSH
- dědičné dystrofie rohovky genetika MeSH
- DNA vazebné proteiny genetika MeSH
- genetická transkripce MeSH
- genetické lokusy MeSH
- HEK293 buňky MeSH
- intergenová DNA genetika MeSH
- introny genetika MeSH
- lidé MeSH
- modely genetické MeSH
- mutace genetika MeSH
- promotorové oblasti (genetika) genetika MeSH
- rodina MeSH
- rodokmen MeSH
- rohovkový endotel patologie MeSH
- sekvence nukleotidů MeSH
- sekvenování celého genomu MeSH
- transkripční faktory genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH