Heterogeneous nitrogen fixation rates confer energetic advantage and expanded ecological niche of unicellular diazotroph populations

. 2020 Apr 14 ; 3 (1) : 172. [epub] 20200414

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32286494
Odkazy

PubMed 32286494
PubMed Central PMC7156374
DOI 10.1038/s42003-020-0894-4
PII: 10.1038/s42003-020-0894-4
Knihovny.cz E-zdroje

Nitrogen fixing plankton provide nitrogen to fuel marine ecosystems and biogeochemical cycles but the factors that constrain their growth and habitat remain poorly understood. Here we investigate the importance of metabolic specialization in unicellular diazotroph populations, using laboratory experiments and model simulations. In clonal cultures of Crocosphaera watsonii and Cyanothece sp. spiked with 15N2, cellular 15N enrichment developed a bimodal distribution within colonies, indicating that N2 fixation was confined to a subpopulation. In a model of population metabolism, heterogeneous nitrogen (N2) fixation rates substantially reduce the respiration rate required to protect nitrogenase from O2. The energy savings from metabolic specialization is highest at slow growth rates, allowing populations to survive in deeper waters where light is low but nutrients are high. Our results suggest that heterogeneous N2 fixation in colonies of unicellular diazotrophs confers an energetic advantage that expands the ecological niche and may have facilitated the evolution of multicellular diazotrophs.

Erratum v

PubMed

Zobrazit více v PubMed

Montoya JP, Carpenter EJ, Capone DG. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnol. Oceanogr. 2002;47:1617–1628. doi: 10.4319/lo.2002.47.6.1617. DOI

Hunt BPV, et al. Contribution and pathways of diazotroph-derived nitrogen to zooplankton during the VAHINE mesocosm experiment in the oligotrophic New Caledonia lagoon. Biogeosciences. 2016;13:3131–3145. doi: 10.5194/bg-13-3131-2016. DOI

Horii S, Takahashi K, Shiozaki T, Hashihama F, Furuya K. Stable isotopic evidence for the differential contribution of diazotrophs to the epipelagic grazing food chain in the mid-Pacific Ocean. Glob. Ecol. Biogeogr. 2018;27:1467–1480. doi: 10.1111/geb.12823. DOI

Loick-Wilde N, et al. Nitrogen sources and net growth efficiency of zooplankton in three Amazon River plume food webs. Limnol. Oceanogr. 2016;61:460–481. doi: 10.1002/lno.10227. DOI

Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018;16:263–276. doi: 10.1038/nrmicro.2018.9. PubMed DOI

Gallon JR. Reconciling the incompatible: N2 fixation and oxygen. N. Phytol. 1992;122:571–609. doi: 10.1111/j.1469-8137.1992.tb00087.x. DOI

Fay P. Oxygen relations of nitrogen-fixation in Cyanobacteria. Microbiol Rev. 1992;56:340–373. doi: 10.1128/mr.56.2.340-373.1992. PubMed DOI PMC

Berman-Frank I, et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine Cyanobacterium Trichodesmium. Science. 2001;294:1534–1537. doi: 10.1126/science.1064082. PubMed DOI

Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res. Microbiol. 2003;154:157–164. doi: 10.1016/S0923-2508(03)00029-9. PubMed DOI

Sohm JA, Webb EA, Capone DG. Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 2011;9:499–508. doi: 10.1038/nrmicro2594. PubMed DOI

Moisander PH, et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science. 2010;327:1512–1514. doi: 10.1126/science.1185468. PubMed DOI

Luo YW, et al. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst. Sci. Data. 2012;4:47–73. doi: 10.5194/essd-4-47-2012. DOI

Monteiro FM, Follows MJ, Dutkiewicz S. Distribution of diverse nitrogen fixers in the global ocean. Glob. Biogeochemical Cycles. 2010;24:GB3017.

Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 2011;19:162–173. doi: 10.1016/j.tim.2010.12.004. PubMed DOI

Zehr, J. P. & Bombar, D. Marine nitrogen fixation: organisms, significance, enigmas, and future directions. In Biological nitrogen fixation (ed. FJ de Bruijn) 857–872 (Wiley, 2015).

Zehr JP, et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature. 2001;412:635–638. doi: 10.1038/35088063. PubMed DOI

Foster RA, Sztejrenszus S, Kuypers MM. Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry. J. Phycol. 2013;49:502–516. doi: 10.1111/jpy.12057. PubMed DOI

Montoya JP, et al. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature. 2004;430:1027–1032. doi: 10.1038/nature02824. PubMed DOI

Langlois RJ, Hummer D, LaRoche J. Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl Environ. Microbiol. 2008;74:1922–1931. doi: 10.1128/AEM.01720-07. PubMed DOI PMC

Mohr W, Intermaggio MP, LaRoche J. Diel rhythm of nitrogen and carbon metabolism in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ. Microbiol. 2010;12:412–421. doi: 10.1111/j.1462-2920.2009.02078.x. PubMed DOI

Dron A, et al. Light:dark (12:12 h) quantification of carbohydrate fluxes in Crocosphaera watsonii. Aquat. Microb. Ecol. 2012;68:43–55. doi: 10.3354/ame01600. DOI

Masuda T, et al. Diel regulation of photosynthetic activity in the oceanic unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ. Microbiol. 2018;20:546–560. doi: 10.1111/1462-2920.13963. PubMed DOI

Mohr W, Vagner T, Kuypers MM, Ackermann M, La Roche J. Resolution of conflicting signals at the single-cell level in the regulation of cyanobacterial photosynthesis and nitrogen fixation. PLoS ONE. 2013;8:e66060. doi: 10.1371/journal.pone.0066060. PubMed DOI PMC

Langlois RJ, LaRoche J, Raab PA. Diazotrophic diversity and distribution in the tropical and subtropical Atlantic Ocean. Appl. Environ. Microbiol. 2005;71:7910–7919. doi: 10.1128/AEM.71.12.7910-7919.2005. PubMed DOI PMC

Foster RA, et al. Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria in the western tropical north Atlantic Ocean. Limnol. Oceanogr. 2007;52:517–532. doi: 10.4319/lo.2007.52.2.0517. DOI

Bonnet S, et al. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia) Biogeosciences. 2016;13:2653–2673. doi: 10.5194/bg-13-2653-2016. DOI

Reddy KJ, Haskell B, Sherman DM, Sherman LA. Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J. Bacteriol. 1993;175:1284–1292. doi: 10.1128/jb.175.5.1284-1292.1993. PubMed DOI PMC

Červený J, Sinetova MA, Valledor L, Sherman LA, Nedbal L. Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. Proc. Natl. Acad. Sci. USA. 2013;110:13210–13215. doi: 10.1073/pnas.1301171110. PubMed DOI PMC

Tuit C, Waterbury J, Ravizzaz G. Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria. Limnol. Oceanogr. 2004;49:978–990. doi: 10.4319/lo.2004.49.4.0978. DOI

Colón-López M, Sherman DM, Sherman LA. Transcriptional and translational regulation of nitrogenase in light-dark- and continuous-light grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. J. Bacteriol. 1997;179:4319–4327. doi: 10.1128/jb.179.13.4319-4327.1997. PubMed DOI PMC

Pennebaker K, Mackey KRM, Smith RM, Williams SB, Zehr JP. Diel cycling of DNA staining and nifH gene regulation in the unicellular cyanobacterium Crocosphaera watsonii strain WH 8501 (Cyanophyta) Environ. Microbiol. 2010;12:1001–1010. doi: 10.1111/j.1462-2920.2010.02144.x. PubMed DOI PMC

Wagner M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 2009;63:411–429. doi: 10.1146/annurev.micro.091208.073233. PubMed DOI

Musat N, Foster R, Vagner T, Adam B, Kuypers MM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol. Rev. 2012;36:486–511. doi: 10.1111/j.1574-6976.2011.00303.x. PubMed DOI

Popa R, et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 2007;1:354–360. doi: 10.1038/ismej.2007.44. PubMed DOI

Finzi-Hart JA, et al. Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc. Natl. Acad. Sci. USA. 2009;106:9931–9931. doi: 10.1073/pnas.0810547106. PubMed DOI PMC

Marchant HK, Mohr W, Kuypers MM. Recent advances in marine N-cycle studies using 15N labeling methods. Curr. Opin. Biotechnol. 2016;41:53–59. doi: 10.1016/j.copbio.2016.04.019. PubMed DOI

Martínez-Pérez C, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat. Microbiol. 2016;1:16163. doi: 10.1038/nmicrobiol.2016.163. PubMed DOI

Krupke A, et al. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A–haptophyte symbiosis. ISME J. 2015;9:1635–1647. doi: 10.1038/ismej.2014.253. PubMed DOI PMC

Iversen, G. R. Analysis of variance. In: International Encyclopedia of Statistical Science (ed. Lovric M.) (Springer, Berlin, Heidelberg, 2011).

Bandyopadhyay A, Elvitigala T, Liberton M, Pakrasi HB. Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol. 2013;161:1334–1346. doi: 10.1104/pp.112.208231. PubMed DOI PMC

Stȩpniak, C. Coefficient of variation. In: International Encyclopedia of Statistical Science (ed. Lovric M.) (Springer, Berlin, Heidelberg, 2011).

Zhang C, Mapes BE, Soden BJ. Bimodality in tropical water vapour. Q. J. R. Meteorological Soc. 2003;129:2847–2866. doi: 10.1256/qj.02.166. DOI

Großkopf T, Laroche J. Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle. Front. Microbiol. 2012;3:236. doi: 10.3389/fmicb.2012.00236. PubMed DOI PMC

Inomura K, Bragg J, Follows MJ. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME J. 2017;11:166–175. doi: 10.1038/ismej.2016.97. PubMed DOI PMC

Rittmann, B. E. & McCarty, P. L. Stoichiometry and bacterial energetics. In: Environmental Biotechnology: Principles and Applications. 126–164 (McGraw-Hill, New York, NY, USA, 2001).

Fu FX, et al. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol. Oceanogr. 2008;53:2472–2484. doi: 10.4319/lo.2008.53.6.2472. DOI

Gradoville MR, White AE, Letelier RM. Physiological response of Crocosphaera watsonii to enhanced and fluctuating carbon dioxide conditions. PLoS ONE. 2014;9:e110660. doi: 10.1371/journal.pone.0110660. PubMed DOI PMC

Follett CL, Dutkiewicz S, Karl DM, Inomura K, Follows MJ. Seasonal resource conditions favor a summertime increase in North Pacific diatom-diazotroph associations. ISME J. 2018;12:1543–1557. doi: 10.1038/s41396-017-0012-x. PubMed DOI PMC

Karl DM, Lukas R. The Hawaii Ocean Time-series (HOT) Program: Background, rationale and field implementation. Deep-Sea Res. 1996;43:129–156.

Shiozaki T, et al. Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean. Glob. Biogeochem. Cycles. 2018;32:1028–1044. doi: 10.1029/2017GB005869. DOI

Dekaezemacker J, Bonnet S. Sensitivity of N2 fixation to combined nitrogen forms (NO3− and NH4+) in two strains of the marine diazotroph Crocosphaera watsonii (Cyanobacteria) Mar. Ecol. Prog. Ser. 2011;438:33–46. doi: 10.3354/meps09297. DOI

Knapp AN, Dekaezemacker J, Bonnet S, Sohm JA, Capone DG. Sensitivity of Trichodesmium erythraeum and Crocosphaera watsonii abundance and N2 fixation rates to varying NO3− and PO43− concentrations in batch cultures. Aquat. Microb. Ecol. 2012;66:223–236. doi: 10.3354/ame01577. DOI

Knapp AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3:374. doi: 10.3389/fmicb.2012.00374. PubMed DOI PMC

Inomura K, Bragg J, Riemann L, Follows MJ. A quantitative model of nitrogen fixation in the presence of ammonium. PLoS ONE. 2018;13:e0208282. doi: 10.1371/journal.pone.0208282. PubMed DOI PMC

Stukel MR, Coles VJ, Brooks MT, Hood RR. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon River plume. Biogeosciences. 2014;11:3259–3278. doi: 10.5194/bg-11-3259-2014. DOI

Dutkiewicz S, et al. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model. Biogeosciences. 2015;12:4447–4481. doi: 10.5194/bg-12-4447-2015. DOI

Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 2015;13:497–508. doi: 10.1038/nrmicro3491. PubMed DOI

Celiker H, Gore J. Cellular cooperation: insights from microbes. Trends Cell Biol. 2013;23:9–15. doi: 10.1016/j.tcb.2012.08.010. PubMed DOI

Lin S, Henze S, Lundgren P, Bergman B, Carpenter EJ. Whole-cell immunolocalization of nitrogenase in marine diazotrophic cyanobacteria, Trichodesmium spp. Appl. Environ. Microbiol. 1998;64:3052–3058. doi: 10.1128/AEM.64.8.3052-3058.1998. PubMed DOI PMC

Kupper H, Ferimazova N, Setlik I, Berman-Frank I. Traffic lights in trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. Plant Physiol. 2004;135:2120–2133. doi: 10.1104/pp.104.045963. PubMed DOI PMC

Eichner MJ, et al. Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2. ISME J. 2017;11:1305–1317. doi: 10.1038/ismej.2017.15. PubMed DOI PMC

Ohki K, Taniuchi Y. Detection of nitrogenase in individual cells of a natural population of Trichodesmium using immunocytochemical methods for fluorescent cells. J. Oceanogr. 2009;65:427–432. doi: 10.1007/s10872-009-0037-5. DOI

Sanchez-Baracaldo P, Hayes PK, Blank CE. Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology. 2005;3:145–165. doi: 10.1111/j.1472-4669.2005.00050.x. DOI

Hammerschmidt K, Landan G, Kümmel Tria FD, Dagan T. A chronology of multicellularity evolution in cyanobacteria. bioRxiv. 2019 doi: 10.1101/570788. DOI

Schirrmeister BE, Antonelli A, Bagheri HC. The origin of multicellularity in cyanobacteria. BMC Evolut. Biol. 2011;11:45. doi: 10.1186/1471-2148-11-45. PubMed DOI PMC

Kirk DL. A twelve-step program for evolving multicellularity and a division of labor. BioEssays. 2005;27:299–310. doi: 10.1002/bies.20197. PubMed DOI

Michod RE. Evolution of individuality during the transition from unicellular to multicellular life. Proc. Natl. Acad. Sci. USA. 2007;104:8613–8618. doi: 10.1073/pnas.0701489104. PubMed DOI PMC

Masuda T, Furuya K, Kodama T, Takeda S, Harrison PJ. Ammonium uptake and dinitrogen fixation by the unicellular nanocyanobacterium Crocosphaera watsoniiin nitrogen-limited continuous cultures. Limnol. Oceanogr. 2013;58:2029–2036. doi: 10.4319/lo.2013.58.6.2029. DOI

Guillard RRL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 1962;8:229–239. doi: 10.1139/m62-029. PubMed DOI

Guillard, R. R. L. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals (eds Smith W.L. & Chanley M.H) 26–60 (Plenum Press, New York, USA, 1975).

Provasoli L, McLaughlin JJA, Droop MR. The development of artificial media for marine algae. Arcb. Mikrobiol. 1957;25:392–428. doi: 10.1007/BF00446694. PubMed DOI

Shiozaki T, et al. Why is Trichodesmium abundant in the Kuroshio? Biogeosciences. 2015;12:6931–6943. doi: 10.5194/bg-12-6931-2015. DOI

Musat N, et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. USA. 2008;105:17861–17866. doi: 10.1073/pnas.0809329105. PubMed DOI PMC

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Chavez FP, Messie M, Pennington JT. Marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 2011;3:227–260. doi: 10.1146/annurev.marine.010908.163917. PubMed DOI

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953;21:1087–1092. doi: 10.1063/1.1699114. DOI

Omta AW, et al. Extracting phytoplankton physiological traits from batch and chemostat culture data. Limnol. Oceanogr.: Methods. 2017;15:453–466. doi: 10.1002/lom3.10172. DOI

Krishnamoorthy, K. Statistical distributions: an overview. In International Encyclopedia of Statistical Science (ed. Lovric M.) (Springer, Berlin, Heidelberg, 2011).

Wilson EB, Hilferty MM. The distribution of chi-square. Proc. Natl. Acad. Sci. USA. 1931;17:684–688. doi: 10.1073/pnas.17.12.684. PubMed DOI PMC

Sohm JA, Edwards BR, Wilson BG, Webb EA. Constitutive extracellular polysaccharide (EPS) production by specific isolates of Crocosphaera watsonii. Front Microbiol. 2011;2:229. doi: 10.3389/fmicb.2011.00229. PubMed DOI PMC

Benson BB, Krause D. The concentration and isotopic fraction of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 1984;29:620–632. doi: 10.4319/lo.1984.29.3.0620. DOI

Ågren GI. The C:°N:°P stoichiometry of autotrophs - theory and observations. Ecol. Lett. 2004;7:185–191. doi: 10.1111/j.1461-0248.2004.00567.x. DOI

Pahlow M, Oschlies A. Chain model of phytoplankton P, N and light colimitation. Mar. Ecol. Prog. Ser. 2009;376:69–83. doi: 10.3354/meps07748. DOI

Talmy D, Blackford J, Hardman-Mountford NJ, Dumbrell AJ, Geider RJ. An optimality model of photoadaptation in contrasting aquatic light regimes. Limnol. Oceanogr. 2013;58:1802–1818. doi: 10.4319/lo.2013.58.5.1802. DOI

Geider RJ, MacIntyre HL, Kana TM. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 1998;43:679–694. doi: 10.4319/lo.1998.43.4.0679. DOI

Ghyoot, C., Flynn, K. J., Mitra, A., Lancelot, C. & Gypens, N. Modeling plankton mixotrophy: a mechanistic model consistent with the Shuter-type biochemical approach. Front. Ecol. Evol.5, 10.3389/fevo.2017.00078 (2017).

Cullen JJ. On models of growth and photosynthesis in phytoplankton. Deep Sea Res. 1989;37:667–683. doi: 10.1016/0198-0149(90)90097-F. DOI

Letelier RM, Karl DM, Abbott MR, Bidigare RR. Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol. Oceanogr. 2004;49:508–519. doi: 10.4319/lo.2004.49.2.0508. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace