Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
23878254
PubMed Central
PMC3740830
DOI
10.1073/pnas.1301171110
PII: 1301171110
Knihovny.cz E-zdroje
- Klíčová slova
- cyanobacteria, diurnal, metabolism, oscillation,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- bioreaktory mikrobiologie MeSH
- cirkadiánní rytmus genetika fyziologie MeSH
- Cyanothece genetika růst a vývoj metabolismus MeSH
- fixace dusíku genetika fyziologie MeSH
- fotosyntéza genetika fyziologie MeSH
- glykogen metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kyslík metabolismus MeSH
- oxid uhličitý metabolismus MeSH
- oxidoreduktasy genetika metabolismus MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- regulace genové exprese u bakterií MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- bakteriální proteiny MeSH
- glykogen MeSH
- kyslík MeSH
- NifB protein, Bacteria MeSH Prohlížeč
- nitrogenase reductase MeSH Prohlížeč
- oxid uhličitý MeSH
- oxidoreduktasy MeSH
The unicellular cyanobacterium Cyanothece sp. American Type Culture Collection (ATCC) 51142 is capable of performing oxygenic photosynthesis during the day and microoxic nitrogen fixation at night. These mutually exclusive processes are possible only by temporal separation by circadian clock or another cellular program. We report identification of a temperature-dependent ultradian metabolic rhythm that controls the alternating oxygenic and microoxic processes of Cyanothece sp. ATCC 51142 under continuous high irradiance and in high CO2 concentration. During the oxygenic photosynthesis phase, nitrate deficiency limited protein synthesis and CO2 assimilation was directed toward glycogen synthesis. The carbohydrate accumulation reduced overexcitation of the photosynthetic reactions until a respiration burst initiated a transition to microoxic N2 fixation. In contrast to the circadian clock, this ultradian period is strongly temperature-dependent: 17 h at 27 °C, which continuously decreased to 10 h at 39 °C. The cycle was expressed by an oscillatory modulation of net O2 evolution, CO2 uptake, pH, fluorescence emission, glycogen content, cell division, and culture optical density. The corresponding ultradian modulation was also observed in the transcription of nitrogenase-related nifB and nifH genes and in nitrogenase activities. We propose that the control by the newly identified metabolic cycle adds another rhythmic component to the circadian clock that reflects the true metabolic state depending on the actual temperature, irradiance, and CO2 availability.
Zobrazit více v PubMed
Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 2011;19(4):162–173. PubMed
Bandyopadhyay A, Elvitigala T, Liberton M, Pakrasi HB. Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol. 2013;161(3):1334–1346. PubMed PMC
Sherman LA, Min H, Toepel J, Pakrasi HB. In: Recent Advances in Phototrophic Prokaryotes. Hallenbeck PC, editor. New York: Springer; 2010. pp. 275–290.
Bandyopadhyay A, Stöckel J, Min H, Sherman LA, Pakrasi HB. High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun. 2010;1(9):139. PubMed
Aryal UK, et al. Proteome analyses of strains ATCC 51142 and PCC 7822 of the diazotrophic cyanobacterium Cyanothece sp. under culture conditions resulting in enhanced H2 production. Appl Environ Microbiol. 2013;79(4):1070–1077. PubMed PMC
Schneegurt MA, Sherman DM, Nayar S, Sherman LA. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol. 1994;176(6):1586–1597. PubMed PMC
Dong G, Golden SS. How a cyanobacterium tells time. Curr Opin Microbiol. 2008;11(6):541–546. PubMed PMC
Iwasaki H, Kondo T. Circadian timing mechanism in the prokaryotic clock system of cyanobacteria. J Biol Rhythms. 2004;19(5):436–444. PubMed
Johnson CH, Mori T, Xu Y. A cyanobacterial circadian clockwork. Curr Biol. 2008;18(17):R816–R825. PubMed PMC
Nakajima M, et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science. 2005;308(5720):414–415. PubMed
Johnson CH, Elliott J, Foster R, Honma K-I, Kronauer R. In: Chronobiology: Biological Timekeeping. Dunlap JC, Loros JJ, DeCoursey PJ, editors. Sunderland, UK: Sinauer Associates; 2004. pp. 66–105.
Welsh EA, et al. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc Natl Acad Sci USA. 2008;105(39):15094–15099. PubMed PMC
Toepel J, Welsh E, Summerfield TC, Pakrasi HB, Sherman LA. Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light-dark and continuous-light growth. J Bacteriol. 2008;190(11):3904–3913. PubMed PMC
Toepel J, McDermott JE, Summerfield TC, Sherman LA. Transcriptional analysis of the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles. J Phycol. 2009;45(3):610–620. PubMed
Cervený J, Nedbal L. Metabolic rhythms of the cyanobacterium Cyanothece sp. ATCC 51142 correlate with modeled dynamics of circadian clock. J Biol Rhythms. 2009;24(4):295–303. PubMed
Sinetova MA, Cervený J, Zavřel T, Nedbal L. On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142. J Biotechnol. 2012;162(1):148–155. PubMed
Elvitigala T, Stöckel J, Ghosh BK, Pakrasi HB. Effect of continuous light on diurnal rhythms in Cyanothece sp. ATCC 51142. BMC Genomics. 2009;10(1):226. PubMed PMC
Tu BP, Kudlicki A, Rowicka M, McKnight SL. Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes. Science. 2005;310(5751):1152–1158. PubMed
Nedbal L, Trtílek M, Cervený J, Komárek O, Pakrasi HB. A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol Bioeng. 2008;100(5):902–910. PubMed
Suzuki E, et al. Physicochemical variation of cyanobacterial starch, the insoluble α-Glucans in cyanobacteria. Plant Cell Physiol. 2013;54(4):465–473. PubMed
McDermott JE, et al. A model of cyclic transcriptomic behavior in the cyanobacterium Cyanothece sp. ATCC 51142. Mol Biosyst. 2011;7(8):2407–2418. PubMed
Schneegurt MA, Tucker DL, Ondr JK, Sherman DM, Sherman LA. Metabolic rhythms of a diazotrophic cyanobacterium, Cyanothece sp. strain atcc 51142, heterotrophically grown in continuous dark. J Phycol. 2000;36(1):107–117.
Elvitigala T, Pakrasi HB, Ghosh BK. Dynamic network modeling of diurnal genes in cyanobacteria. In: Ghosh B, Martin CF, Yishao Z, editors. Emergent Problems in Nonlinear Systems and Control. Heidelberg: Springer; 2009. pp. 21–41.
Chen C-I, McDonald KA. Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: II. Analysis of cell synchronization and metabolism. Biotechnol Bioeng. 1990;36(1):28–38. PubMed
Müller D, Exler S, Aguilera-Vázquez L, Guerrero-Martín E, Reuss M. Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae. Yeast. 2003;20(4):351–367. PubMed
Saito T, Mitsui K, Hamada Y, Tsurugi K. Regulation of the Gts1p level by the ubiquitination system to maintain metabolic oscillations in the continuous culture of yeast. J Biol Chem. 2002;277(37):33624–33631. PubMed
Tu BP, McKnight SL. Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol. 2006;7(9):696–701. PubMed
Reddy KJ, Haskell JB, Sherman DM, Sherman LA. Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J Bacteriol. 1993;175(5):1284–1292. PubMed PMC
Provasoli L, McLaughlin JJA, Droop MR. The development of artificial media for marine algae. Arch Mikrobiol. 1957;25(4):392–428. PubMed
van Baalen C. Studies on marine blue-green algae. Bot Mar. 1962;4:129–139.
Červený J, Šetlík I, Trtílek M, Nedbal L. Photobioreactor for cultivation and real-time, in-situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms. Eng Life Sci. 2009;9(3):247–253.
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8(2):R19. PubMed PMC