Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142

. 2013 Aug 06 ; 110 (32) : 13210-5. [epub] 20130722

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid23878254

The unicellular cyanobacterium Cyanothece sp. American Type Culture Collection (ATCC) 51142 is capable of performing oxygenic photosynthesis during the day and microoxic nitrogen fixation at night. These mutually exclusive processes are possible only by temporal separation by circadian clock or another cellular program. We report identification of a temperature-dependent ultradian metabolic rhythm that controls the alternating oxygenic and microoxic processes of Cyanothece sp. ATCC 51142 under continuous high irradiance and in high CO2 concentration. During the oxygenic photosynthesis phase, nitrate deficiency limited protein synthesis and CO2 assimilation was directed toward glycogen synthesis. The carbohydrate accumulation reduced overexcitation of the photosynthetic reactions until a respiration burst initiated a transition to microoxic N2 fixation. In contrast to the circadian clock, this ultradian period is strongly temperature-dependent: 17 h at 27 °C, which continuously decreased to 10 h at 39 °C. The cycle was expressed by an oscillatory modulation of net O2 evolution, CO2 uptake, pH, fluorescence emission, glycogen content, cell division, and culture optical density. The corresponding ultradian modulation was also observed in the transcription of nitrogenase-related nifB and nifH genes and in nitrogenase activities. We propose that the control by the newly identified metabolic cycle adds another rhythmic component to the circadian clock that reflects the true metabolic state depending on the actual temperature, irradiance, and CO2 availability.

Zobrazit více v PubMed

Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 2011;19(4):162–173. PubMed

Bandyopadhyay A, Elvitigala T, Liberton M, Pakrasi HB. Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus Cyanothece. Plant Physiol. 2013;161(3):1334–1346. PubMed PMC

Sherman LA, Min H, Toepel J, Pakrasi HB. In: Recent Advances in Phototrophic Prokaryotes. Hallenbeck PC, editor. New York: Springer; 2010. pp. 275–290.

Bandyopadhyay A, Stöckel J, Min H, Sherman LA, Pakrasi HB. High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun. 2010;1(9):139. PubMed

Aryal UK, et al. Proteome analyses of strains ATCC 51142 and PCC 7822 of the diazotrophic cyanobacterium Cyanothece sp. under culture conditions resulting in enhanced H2 production. Appl Environ Microbiol. 2013;79(4):1070–1077. PubMed PMC

Schneegurt MA, Sherman DM, Nayar S, Sherman LA. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol. 1994;176(6):1586–1597. PubMed PMC

Dong G, Golden SS. How a cyanobacterium tells time. Curr Opin Microbiol. 2008;11(6):541–546. PubMed PMC

Iwasaki H, Kondo T. Circadian timing mechanism in the prokaryotic clock system of cyanobacteria. J Biol Rhythms. 2004;19(5):436–444. PubMed

Johnson CH, Mori T, Xu Y. A cyanobacterial circadian clockwork. Curr Biol. 2008;18(17):R816–R825. PubMed PMC

Nakajima M, et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science. 2005;308(5720):414–415. PubMed

Johnson CH, Elliott J, Foster R, Honma K-I, Kronauer R. In: Chronobiology: Biological Timekeeping. Dunlap JC, Loros JJ, DeCoursey PJ, editors. Sunderland, UK: Sinauer Associates; 2004. pp. 66–105.

Welsh EA, et al. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc Natl Acad Sci USA. 2008;105(39):15094–15099. PubMed PMC

Toepel J, Welsh E, Summerfield TC, Pakrasi HB, Sherman LA. Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light-dark and continuous-light growth. J Bacteriol. 2008;190(11):3904–3913. PubMed PMC

Toepel J, McDermott JE, Summerfield TC, Sherman LA. Transcriptional analysis of the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles. J Phycol. 2009;45(3):610–620. PubMed

Cervený J, Nedbal L. Metabolic rhythms of the cyanobacterium Cyanothece sp. ATCC 51142 correlate with modeled dynamics of circadian clock. J Biol Rhythms. 2009;24(4):295–303. PubMed

Sinetova MA, Cervený J, Zavřel T, Nedbal L. On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142. J Biotechnol. 2012;162(1):148–155. PubMed

Elvitigala T, Stöckel J, Ghosh BK, Pakrasi HB. Effect of continuous light on diurnal rhythms in Cyanothece sp. ATCC 51142. BMC Genomics. 2009;10(1):226. PubMed PMC

Tu BP, Kudlicki A, Rowicka M, McKnight SL. Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes. Science. 2005;310(5751):1152–1158. PubMed

Nedbal L, Trtílek M, Cervený J, Komárek O, Pakrasi HB. A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol Bioeng. 2008;100(5):902–910. PubMed

Suzuki E, et al. Physicochemical variation of cyanobacterial starch, the insoluble α-Glucans in cyanobacteria. Plant Cell Physiol. 2013;54(4):465–473. PubMed

McDermott JE, et al. A model of cyclic transcriptomic behavior in the cyanobacterium Cyanothece sp. ATCC 51142. Mol Biosyst. 2011;7(8):2407–2418. PubMed

Schneegurt MA, Tucker DL, Ondr JK, Sherman DM, Sherman LA. Metabolic rhythms of a diazotrophic cyanobacterium, Cyanothece sp. strain atcc 51142, heterotrophically grown in continuous dark. J Phycol. 2000;36(1):107–117.

Elvitigala T, Pakrasi HB, Ghosh BK. Dynamic network modeling of diurnal genes in cyanobacteria. In: Ghosh B, Martin CF, Yishao Z, editors. Emergent Problems in Nonlinear Systems and Control. Heidelberg: Springer; 2009. pp. 21–41.

Chen C-I, McDonald KA. Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: II. Analysis of cell synchronization and metabolism. Biotechnol Bioeng. 1990;36(1):28–38. PubMed

Müller D, Exler S, Aguilera-Vázquez L, Guerrero-Martín E, Reuss M. Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae. Yeast. 2003;20(4):351–367. PubMed

Saito T, Mitsui K, Hamada Y, Tsurugi K. Regulation of the Gts1p level by the ubiquitination system to maintain metabolic oscillations in the continuous culture of yeast. J Biol Chem. 2002;277(37):33624–33631. PubMed

Tu BP, McKnight SL. Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol. 2006;7(9):696–701. PubMed

Reddy KJ, Haskell JB, Sherman DM, Sherman LA. Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J Bacteriol. 1993;175(5):1284–1292. PubMed PMC

Provasoli L, McLaughlin JJA, Droop MR. The development of artificial media for marine algae. Arch Mikrobiol. 1957;25(4):392–428. PubMed

van Baalen C. Studies on marine blue-green algae. Bot Mar. 1962;4:129–139.

Červený J, Šetlík I, Trtílek M, Nedbal L. Photobioreactor for cultivation and real-time, in-situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms. Eng Life Sci. 2009;9(3):247–253.

Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8(2):R19. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...