Synergistic metal halide perovskite@metal-organic framework hybrids for photocatalytic CO2 reduction
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39346676
PubMed Central
PMC11439556
DOI
10.1016/j.isci.2024.110924
PII: S2589-0042(24)02149-7
Knihovny.cz E-resources
- Keywords
- Catalysis, Chemistry,
- Publication type
- Journal Article MeSH
The photocatalytic reduction of carbon dioxide (CO2) into multi-electron carbon products remains challenging due to the inherent stability of CO2 and slow multi-electron transfer kinetics. Here in, we synthesized a hybrid material, cesium copper halide (Cs3Cu2I5) intercalated onto two-dimensional (2D) cobalt-based zeolite framework (ZIF-9-III) nanosheets (denoted as Cs3Cu2I5@ZIF-1) through a simple mechanochemical grinding. The synergy in the hybrid effectively reduces CO2 to carbon monoxide (CO) at 110 μmol/g/h and methane at 5 μmol/g/h with high selectivity, suppressing hydrogen evolution. Further, we have investigated additional Cs3Cu2I5@ZIF hybrids with varying ZIF-9-III amounts, confirming their selective CO2 reduction to methane over hydrogen. Density functional theory (DFT) calculations reveal a non-covalent interaction between Cs3Cu2I5 and ZIF-9-III, with electron transfer suggesting potential for improved photocatalysis.
Department of Physics SRM University AP Andhra Pradesh Amaravati Andhra Pradesh 522502 India
School of Physical and Applied Sciences Goa University Taleigao Plateau Goa 403206 India
See more in PubMed
Nam D.-H., De Luna P., Rosas-Hernández A., Thevenon A., Li F., Agapie T., Peters J.C., Shekhah O., Eddaoudi M., Sargent E.H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020;19:266–276. doi: 10.1038/s41563-020-0610-2. PubMed DOI
Cai J., Li D., Jiang L., Yuan J., Li Z., Li K. Review on CeO2-Based Photocatalysts for Photocatalytic Reduction of CO2: Progresses and Perspectives. Energ Fuel. 2023;37:4878–4897. doi: 10.1021/acs.energyfuels.3c00120. DOI
Kovačič Ž., Likozar B., Huš M. Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Cat. 2020;10:14984–15007. doi: 10.1021/acscatal.0c02557. DOI
Fang S., Rahaman M., Bharti J., Reisner E., Robert M., Ozin G.A., Hu Y.H. Photocatalytic CO2 reduction. Nat. Rev. Methods Primers. 2023;3:61. doi: 10.1038/s43586-023-00243-w. DOI
Xu Z., Chen Y., Wang B., Ran Y., Zhong J., Li M. Highly selective photocatalytic CO2 reduction and hydrogen evolution facilitated by oxidation induced nitrogen vacancies on g-C3N4. J. Colloid Interface Sci. 2023;651:645–658. doi: 10.1016/j.jcis.2023.08.012. PubMed DOI
Ma Y., Yi X., Wang S., Li T., Tan B., Chen C., Majima T., Waclawik E.R., Zhu H., Wang J. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nat. Commun. 2022;13:1400. doi: 10.1038/s41467-022-29102-0. PubMed DOI PMC
Liao G., Ding G., Yang B., Li C. Challenges in Photocatalytic Carbon Dioxide Reduction. Precis. Chem. 2024;2:49–56. doi: 10.1021/prechem.3c00112. DOI
Kreft S., Schoch R., Schneidewind J., Rabeah J., Kondratenko E.V., Kondratenko V.A., Junge H., Bauer M., Wohlrab S., Beller M. Improving Selectivity and Activity of CO2 Reduction Photocatalysts with Oxygen. Chem. 2019;5:1818–1833. doi: 10.1016/j.chempr.2019.04.006. DOI
Wang Y., Chen E., Tang J. Insight on Reaction Pathways of Photocatalytic CO2 Conversion. ACS Cat. 2022;12:7300–7316. doi: 10.1021/acscatal.2c01012. PubMed DOI PMC
Li M., He C., Yang X., Liu Z., Li J., Wang L., Wu S., Zhang J. Optimizing water dissociation dehydrogenation process via Sn single atom incorporation for boosting photocatalytic CO2 methanation. Chem Cat. 2023;3 doi: 10.1016/j.checat.2023.100737. DOI
Li M., Wu S., Liu D., Ye Z., Wang L., Kan M., Ye Z., Khan M., Zhang J. Engineering Spatially Adjacent Redox Sites with Synergistic Spin Polarization Effect to Boost Photocatalytic CO2 Methanation. J. Am. Chem. Soc. 2024;146:15538–15548. doi: 10.1021/jacs.4c04264. PubMed DOI
Li J., He C., Wang J., Gu X., Zhang Z., Li H., Li M., Wang L., Wu S., Zhang J. Boosting CO production from visible-light CO2 photoreduction via defects-induced electronic-structure tuning and reaction-energy optimization on ultrathin carbon nitride. Green Chem. 2023;25:8826–8837. doi: 10.1039/D3GC02371K. DOI
Wang X., He J., Chen X., Ma B., Zhu M. Metal halide perovskites for photocatalytic CO2 reduction: An overview and prospects. Coord. Chem. Rev. 2023;482 doi: 10.1016/j.ccr.2023.215076. DOI
Dong Z., Li B., Zhu Y., Guo W. Metal halide perovskites for CO2 photoreduction: recent advances and future perspectives. EES Cat. 2024;2:448–474. doi: 10.1039/D3EY00187C. DOI
Yadav S.K., Grandhi G.K., Dubal D.P., de Mello J.C., Otyepka M., Zbořil R., Fischer R.A., Jayaramulu K. Metal Halide Perovskite@Metal-Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. Small. 2020;16 doi: 10.1002/smll.202004891. PubMed DOI
Bienkowski K., Solarska R., Trinh L., Widera-Kalinowska J., Al-Anesi B., Liu M., Grandhi G.K., Vivo P., Oral B., Yılmaz B., Yıldırım R. Halide Perovskites for Photoelectrochemical Water Splitting and CO2 Reduction: Challenges and Opportunities. ACS Cat. 2024;14:6603–6622. doi: 10.1021/acscatal.3c06040. PubMed DOI PMC
Li D., Kassymova M., Cai X., Zang S.-Q., Jiang H.-L. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord. Chem. Rev. 2020;412 doi: 10.1016/j.ccr.2020.213262. DOI
Chen Y., Wang D., Deng X., Li Z. Metal–organic frameworks (MOFs) for photocatalytic CO2 reduction. Cat. Sci. Tech. 2017;7:4893–4904. doi: 10.1039/C7CY01653K. DOI
Zhan W., Gao H., Yang Y., Li X., Zhu Q.-L. Rational Design of Metal–Organic Framework-Based Materials for Photocatalytic CO2 Reduction. Adv. Energy Sust. Res. 2022;3 doi: 10.1002/aesr.202200004. DOI
Hao Y.-C., Chen L.-W., Li J., Guo Y., Su X., Shu M., Zhang Q., Gao W.-Y., Li S., Yu Z.-L., et al. Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat. Commun. 2021;12:2682. doi: 10.1038/s41467-021-22991-7. PubMed DOI PMC
Liu Z., Chen Z., Li M., Li J., Zhuang W., Yang X., Wu S., Zhang J. Construction of Single Ni Atom-Immobilized ZIF-8 with Ordered Hierarchical Pore Structures for Selective CO2 Photoreduction. ACS Cat. 2023;13:6630–6640. doi: 10.1021/acscatal.3c01118. DOI
Li M., Liu Z., Wu S., Zhang J. Advances for CO2 Photocatalytic Reduction in Porous Ti-Based Photocatalysts. ACS ES. T. Eng. 2022;2:942–956. doi: 10.1021/acsestengg.1c00447. DOI
Chen L., Reiss P.S., Chong S.Y., Holden D., Jelfs K.E., Hasell T., Little M.A., Kewley A., Briggs M.E., Stephenson A., et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater. 2014;13:954–960. doi: 10.1038/nmat4035. PubMed DOI
Ding G., Han S.-T., Kuo C.-C., Roy V.A.L., Zhou Y. Porphyrin-Based Metal–Organic Frameworks for Neuromorphic Electronics. Small Struct. 2023;4 doi: 10.1002/sstr.202200150. DOI
Jayaramulu K., Devi B. Hybrid Two-Dimensional Porous Materials. Chem. Mater. 2023;35:9473–9492. doi: 10.1021/acs.chemmater.3c00829. DOI
Kong Z.-C., Liao J.-F., Dong Y.-J., Xu Y.-F., Chen H.-Y., Kuang D.-B., Su C.-Y. Core@Shell CsPbBr3@Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO2 Reduction. ACS Energy Lett. 2018;3:2656–2662. doi: 10.1021/acsenergylett.8b01658. DOI
Nie W., Tsai H. Perovskite nanocrystals stabilized in metal–organic frameworks for light emission devices. J. Mater. Chem. A. 2022;10:19518–19533. doi: 10.1039/D2TA02154D. DOI
Boström H.L.B., Goodwin A.L. Hybrid Perovskites, Metal–Organic Frameworks, and Beyond: Unconventional Degrees of Freedom in Molecular Frameworks. Acc. Chem. Res. 2021;54:1288–1297. doi: 10.1021/acs.accounts.0c00797. PubMed DOI PMC
Ye Y., Yin Y., Chen Y., Li S., Li L., Yamauchi Y. Metal-Organic Framework Materials in Perovskite Solar Cells: Recent Advancements and Perspectives. Small. 2023;19 doi: 10.1002/smll.202208119. PubMed DOI
Shen M., Zhang Y., Xu H., Ma H. MOFs based on the application and challenges of perovskite solar cells. iScience. 2021;24 doi: 10.1016/j.isci.2021.103069. PubMed DOI PMC
Li N., Zhai X.-P., Ma B., Zhang H.-J., Xiao M.-J., Wang Q., Zhang H.-L. Highly selective photocatalytic CO2 reduction via a lead-free perovskite/MOF catalyst. J Mater. Chem. A. 2023;11:4020–4029. doi: 10.1039/D2TA09777J. DOI
Shyamal S., Pradhan N. Halide Perovskite Nanocrystal Photocatalysts for CO2 Reduction: Successes and Challenges. J. Phys. Chem. Lett. 2020;11:6921–6934. doi: 10.1021/acs.jpclett.0c00191. PubMed DOI
Raza M.A., Li F., Que M., Zhu L., Chen X. Photocatalytic reduction of CO2 by halide perovskites: recent advances and future perspectives. Mater. Adv. 2021;2:7187–7209. doi: 10.1039/D1MA00703C. DOI
Khan M., Akmal Z., Tayyab M., Mansoor S., Zeb A., Ye Z., Zhang J., Wu S., Wang L. MOFs materials as photocatalysts for CO2 reduction: Progress, challenges and perspectives. Carbon Capture Sci. Tech. 2024;11 doi: 10.1016/j.ccst.2024.100191. DOI
Sena M.S., Cui J., Baghdadi Y., Rattner E., Daboczi M., Lopes-Moriyama A.L., dos Santos A.G., Eslava S. Lead-Free Halide Perovskite Cs2AgBiBr6/Bismuthene Composites for Improved CH4 Production in Photocatalytic CO2 Reduction. ACS Appl. Energy Mater. 2023;6:10193–10204. doi: 10.1021/acsaem.2c03105. PubMed DOI PMC
Wu L.-Y., Mu Y.-F., Guo X.-X., Zhang W., Zhang Z.-M., Zhang M., Lu T.-B. Encapsulating Perovskite Quantum Dots in Iron-Based Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2019;58:9491–9495. doi: 10.1002/anie.201904537. PubMed DOI
Cheng R., Debroye E., Hofkens J., Roeffaers M.B.J. Efficient Photocatalytic CO2 Reduction with MIL-100(Fe)-CsPbBr3 Composites. Catal. 2020;10:1352. doi: 10.3390/catal10111352. DOI
Zhou M., Wang Z., Mei A., Yang Z., Chen W., Ou S., Wang S., Chen K., Reiss P., Qi K., et al. Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework. Nat. Commun. 2023;14:2473. doi: 10.1038/s41467-023-37545-2. PubMed DOI PMC
Jayaramulu K., Masa J., Morales D.M., Tomanec O., Ranc V., Petr M., Wilde P., Chen Y.-T., Zboril R., Schuhmann W., Fischer R.A. Ultrathin 2D Cobalt Zeolite-Imidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution. Adv. Sci. 2018;5 doi: 10.1002/advs.201801029. PubMed DOI PMC
Grandhi G.K., Viswanath N.S.M., Cho H.B., Han J.H., Kim S.M., Choi S., Im W.B. Mechanochemistry as a Green Route: Synthesis, Thermal Stability, and Postsynthetic Reversible Phase Transformation of Highly-Luminescent Cesium Copper Halides. J. Phys. Chem. Lett. 2020;11:7723–7729. doi: 10.1021/acs.jpclett.0c02384. PubMed DOI
Magdalin A.E., Nixon P.D., Jayaseelan E., Sivakumar M., Devi S.K.N., Subathra M.S.P., Kumar N.M., Ananthi N. Development of lead-free perovskite solar cells: Opportunities, challenges, and future technologies. Results Eng. 2023;20 doi: 10.1016/j.rineng.2023.101438. DOI
Wang X., Zhang T., Lou Y., Zhao Y. All-inorganic lead-free perovskites for optoelectronic applications. Mater. Chem. Front. 2019;3:365–375. doi: 10.1039/C8QM00611C. DOI
de Souza Carvalho T.A., Magalhaes L.F., do Livramento Santos C.I., de Freitas T.A.Z., Carvalho Vale B.R., Vale da Fonseca A.F., Schiavon M.A. Lead-Free Metal Halide Perovskite Nanocrystals: From Fundamentals to Applications. Chem. Eur J. 2023;29 doi: 10.1002/chem.202202518. PubMed DOI
Getachew G., Wibrianto A., Rasal A.S., Kizhepat S., Dirersa W.B., Gurav V., Chang J.-Y. Lead-free metal halide perovskites as the rising star in photocatalysis: The past, present, and prospective. Prog. Mater. Sci. 2023;140 doi: 10.1016/j.pmatsci.2023.101192. DOI
Kukkar P., Kim K.-H., Kukkar D., Singh P. Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications. Coord. Chem. Rev. 2021;446 doi: 10.1016/j.ccr.2021.214109. DOI
Chen B., Yang Z., Zhu Y., Xia Y. Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A. 2014;2:16811–16831. doi: 10.1039/C4TA02984D. DOI
Sun Y., Zhang N., Yue Y., Xiao J., Huang X., Ishag A. Recent advances in the application of zeolitic imidazolate frameworks (ZIFs) in environmental remediation: a review. Environ. Sci.: Nano. 2022;9:4069–4092. doi: 10.1039/D2EN00601D. DOI
Sankar S.S., Karthick K., Sangeetha K., Karmakar A., Kundu S. Transition-Metal-Based Zeolite Imidazolate Framework Nanofibers via an Electrospinning Approach: A Review. ACS Omega. 2020;5:57–67. doi: 10.1021/acsomega.9b03615. PubMed DOI PMC
Zhao P., Lampronti G.I., Lloyd G.O., Wharmby M.T., Facq S., Cheetham A.K., Redfern S.A.T. Phase Transitions in Zeolitic Imidazolate Framework 7: The Importance of Framework Flexibility and Guest-Induced Instability. Chem. Mater. 2014;26:1767–1769. doi: 10.1021/cm500407f. PubMed DOI PMC
Yang T., Petricek V., Wan W., Wei Z., Sun J. Mullite-derivative Bi2MnxAl7−xO14 (x ∼ 1): structure determination by powder X-ray diffraction from a multi-phase sample. Dalton Trans. 2012;41:2884–2889. doi: 10.1039/C2DT11855F. PubMed DOI
Jun T., Sim K., Iimura S., Sasase M., Kamioka H., Kim J., Hosono H. Lead-Free Highly Efficient Blue-Emitting Cs3Cu2I5 with 0D Electronic Structure. Adv. Mater. 2018;30 doi: 10.1002/adma.201804547. PubMed DOI
Wang Y., Zhang J., Cheng X., Sha Y., Xu M., Su Z., Hu J., Yao L. ZIF-9(iii) nanosheets synthesized in ionic liquid/ethanol mixture for efficient photocatalytic hydrogen production. Nanoscale. 2022;14:11012–11017. doi: 10.1039/D2NR03139F. PubMed DOI
Beheshti M., Saeidi M., Adel-Rastkhiz M., Shahrestani S., Zarrabi A., Bai J., Simchi A., Akbarmolaie S. Efficient electrochemical CO2 conversion by cobalt-based metal organic frameworks modified by bimetallic gold–silver nanostructures. Cat. Sci. Tech. 2023;13:3645–3654. doi: 10.1039/D3CY00373F. DOI
Kalauni K., Vedrtnam A., Wdowin M., Chaturvedi S. ZIF for CO2 Capture: Structure, Mechanism, Optimization, and Modeling. Processes. 2022;10:2689. doi: 10.3390/pr10122689. DOI
Karamad M., Hansen H.A., Rossmeisl J., Nørskov J.K. Mechanistic Pathway in the Electrochemical Reduction of CO2 on RuO2. ACS Cat. 2015;5:4075–4081. doi: 10.1021/cs501542n. DOI
Tang C., Chen C., Xu W., Xu L. Design of doped cesium lead halide perovskite as a photo-catalytic CO2 reduction catalyst. J. Mater. Chem. A. 2019;7:6911–6919. doi: 10.1039/C9TA00550A. DOI