• This record comes from PubMed

Synergistic metal halide perovskite@metal-organic framework hybrids for photocatalytic CO2 reduction

. 2024 Oct 18 ; 27 (10) : 110924. [epub] 20240911

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Links

PubMed 39346676
PubMed Central PMC11439556
DOI 10.1016/j.isci.2024.110924
PII: S2589-0042(24)02149-7
Knihovny.cz E-resources

The photocatalytic reduction of carbon dioxide (CO2) into multi-electron carbon products remains challenging due to the inherent stability of CO2 and slow multi-electron transfer kinetics. Here in, we synthesized a hybrid material, cesium copper halide (Cs3Cu2I5) intercalated onto two-dimensional (2D) cobalt-based zeolite framework (ZIF-9-III) nanosheets (denoted as Cs3Cu2I5@ZIF-1) through a simple mechanochemical grinding. The synergy in the hybrid effectively reduces CO2 to carbon monoxide (CO) at 110 μmol/g/h and methane at 5 μmol/g/h with high selectivity, suppressing hydrogen evolution. Further, we have investigated additional Cs3Cu2I5@ZIF hybrids with varying ZIF-9-III amounts, confirming their selective CO2 reduction to methane over hydrogen. Density functional theory (DFT) calculations reveal a non-covalent interaction between Cs3Cu2I5 and ZIF-9-III, with electron transfer suggesting potential for improved photocatalysis.

See more in PubMed

Nam D.-H., De Luna P., Rosas-Hernández A., Thevenon A., Li F., Agapie T., Peters J.C., Shekhah O., Eddaoudi M., Sargent E.H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020;19:266–276. doi: 10.1038/s41563-020-0610-2. PubMed DOI

Cai J., Li D., Jiang L., Yuan J., Li Z., Li K. Review on CeO2-Based Photocatalysts for Photocatalytic Reduction of CO2: Progresses and Perspectives. Energ Fuel. 2023;37:4878–4897. doi: 10.1021/acs.energyfuels.3c00120. DOI

Kovačič Ž., Likozar B., Huš M. Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Cat. 2020;10:14984–15007. doi: 10.1021/acscatal.0c02557. DOI

Fang S., Rahaman M., Bharti J., Reisner E., Robert M., Ozin G.A., Hu Y.H. Photocatalytic CO2 reduction. Nat. Rev. Methods Primers. 2023;3:61. doi: 10.1038/s43586-023-00243-w. DOI

Xu Z., Chen Y., Wang B., Ran Y., Zhong J., Li M. Highly selective photocatalytic CO2 reduction and hydrogen evolution facilitated by oxidation induced nitrogen vacancies on g-C3N4. J. Colloid Interface Sci. 2023;651:645–658. doi: 10.1016/j.jcis.2023.08.012. PubMed DOI

Ma Y., Yi X., Wang S., Li T., Tan B., Chen C., Majima T., Waclawik E.R., Zhu H., Wang J. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nat. Commun. 2022;13:1400. doi: 10.1038/s41467-022-29102-0. PubMed DOI PMC

Liao G., Ding G., Yang B., Li C. Challenges in Photocatalytic Carbon Dioxide Reduction. Precis. Chem. 2024;2:49–56. doi: 10.1021/prechem.3c00112. DOI

Kreft S., Schoch R., Schneidewind J., Rabeah J., Kondratenko E.V., Kondratenko V.A., Junge H., Bauer M., Wohlrab S., Beller M. Improving Selectivity and Activity of CO2 Reduction Photocatalysts with Oxygen. Chem. 2019;5:1818–1833. doi: 10.1016/j.chempr.2019.04.006. DOI

Wang Y., Chen E., Tang J. Insight on Reaction Pathways of Photocatalytic CO2 Conversion. ACS Cat. 2022;12:7300–7316. doi: 10.1021/acscatal.2c01012. PubMed DOI PMC

Li M., He C., Yang X., Liu Z., Li J., Wang L., Wu S., Zhang J. Optimizing water dissociation dehydrogenation process via Sn single atom incorporation for boosting photocatalytic CO2 methanation. Chem Cat. 2023;3 doi: 10.1016/j.checat.2023.100737. DOI

Li M., Wu S., Liu D., Ye Z., Wang L., Kan M., Ye Z., Khan M., Zhang J. Engineering Spatially Adjacent Redox Sites with Synergistic Spin Polarization Effect to Boost Photocatalytic CO2 Methanation. J. Am. Chem. Soc. 2024;146:15538–15548. doi: 10.1021/jacs.4c04264. PubMed DOI

Li J., He C., Wang J., Gu X., Zhang Z., Li H., Li M., Wang L., Wu S., Zhang J. Boosting CO production from visible-light CO2 photoreduction via defects-induced electronic-structure tuning and reaction-energy optimization on ultrathin carbon nitride. Green Chem. 2023;25:8826–8837. doi: 10.1039/D3GC02371K. DOI

Wang X., He J., Chen X., Ma B., Zhu M. Metal halide perovskites for photocatalytic CO2 reduction: An overview and prospects. Coord. Chem. Rev. 2023;482 doi: 10.1016/j.ccr.2023.215076. DOI

Dong Z., Li B., Zhu Y., Guo W. Metal halide perovskites for CO2 photoreduction: recent advances and future perspectives. EES Cat. 2024;2:448–474. doi: 10.1039/D3EY00187C. DOI

Yadav S.K., Grandhi G.K., Dubal D.P., de Mello J.C., Otyepka M., Zbořil R., Fischer R.A., Jayaramulu K. Metal Halide Perovskite@Metal-Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. Small. 2020;16 doi: 10.1002/smll.202004891. PubMed DOI

Bienkowski K., Solarska R., Trinh L., Widera-Kalinowska J., Al-Anesi B., Liu M., Grandhi G.K., Vivo P., Oral B., Yılmaz B., Yıldırım R. Halide Perovskites for Photoelectrochemical Water Splitting and CO2 Reduction: Challenges and Opportunities. ACS Cat. 2024;14:6603–6622. doi: 10.1021/acscatal.3c06040. PubMed DOI PMC

Li D., Kassymova M., Cai X., Zang S.-Q., Jiang H.-L. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord. Chem. Rev. 2020;412 doi: 10.1016/j.ccr.2020.213262. DOI

Chen Y., Wang D., Deng X., Li Z. Metal–organic frameworks (MOFs) for photocatalytic CO2 reduction. Cat. Sci. Tech. 2017;7:4893–4904. doi: 10.1039/C7CY01653K. DOI

Zhan W., Gao H., Yang Y., Li X., Zhu Q.-L. Rational Design of Metal–Organic Framework-Based Materials for Photocatalytic CO2 Reduction. Adv. Energy Sust. Res. 2022;3 doi: 10.1002/aesr.202200004. DOI

Hao Y.-C., Chen L.-W., Li J., Guo Y., Su X., Shu M., Zhang Q., Gao W.-Y., Li S., Yu Z.-L., et al. Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat. Commun. 2021;12:2682. doi: 10.1038/s41467-021-22991-7. PubMed DOI PMC

Liu Z., Chen Z., Li M., Li J., Zhuang W., Yang X., Wu S., Zhang J. Construction of Single Ni Atom-Immobilized ZIF-8 with Ordered Hierarchical Pore Structures for Selective CO2 Photoreduction. ACS Cat. 2023;13:6630–6640. doi: 10.1021/acscatal.3c01118. DOI

Li M., Liu Z., Wu S., Zhang J. Advances for CO2 Photocatalytic Reduction in Porous Ti-Based Photocatalysts. ACS ES. T. Eng. 2022;2:942–956. doi: 10.1021/acsestengg.1c00447. DOI

Chen L., Reiss P.S., Chong S.Y., Holden D., Jelfs K.E., Hasell T., Little M.A., Kewley A., Briggs M.E., Stephenson A., et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater. 2014;13:954–960. doi: 10.1038/nmat4035. PubMed DOI

Ding G., Han S.-T., Kuo C.-C., Roy V.A.L., Zhou Y. Porphyrin-Based Metal–Organic Frameworks for Neuromorphic Electronics. Small Struct. 2023;4 doi: 10.1002/sstr.202200150. DOI

Jayaramulu K., Devi B. Hybrid Two-Dimensional Porous Materials. Chem. Mater. 2023;35:9473–9492. doi: 10.1021/acs.chemmater.3c00829. DOI

Kong Z.-C., Liao J.-F., Dong Y.-J., Xu Y.-F., Chen H.-Y., Kuang D.-B., Su C.-Y. Core@Shell CsPbBr3@Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO2 Reduction. ACS Energy Lett. 2018;3:2656–2662. doi: 10.1021/acsenergylett.8b01658. DOI

Nie W., Tsai H. Perovskite nanocrystals stabilized in metal–organic frameworks for light emission devices. J. Mater. Chem. A. 2022;10:19518–19533. doi: 10.1039/D2TA02154D. DOI

Boström H.L.B., Goodwin A.L. Hybrid Perovskites, Metal–Organic Frameworks, and Beyond: Unconventional Degrees of Freedom in Molecular Frameworks. Acc. Chem. Res. 2021;54:1288–1297. doi: 10.1021/acs.accounts.0c00797. PubMed DOI PMC

Ye Y., Yin Y., Chen Y., Li S., Li L., Yamauchi Y. Metal-Organic Framework Materials in Perovskite Solar Cells: Recent Advancements and Perspectives. Small. 2023;19 doi: 10.1002/smll.202208119. PubMed DOI

Shen M., Zhang Y., Xu H., Ma H. MOFs based on the application and challenges of perovskite solar cells. iScience. 2021;24 doi: 10.1016/j.isci.2021.103069. PubMed DOI PMC

Li N., Zhai X.-P., Ma B., Zhang H.-J., Xiao M.-J., Wang Q., Zhang H.-L. Highly selective photocatalytic CO2 reduction via a lead-free perovskite/MOF catalyst. J Mater. Chem. A. 2023;11:4020–4029. doi: 10.1039/D2TA09777J. DOI

Shyamal S., Pradhan N. Halide Perovskite Nanocrystal Photocatalysts for CO2 Reduction: Successes and Challenges. J. Phys. Chem. Lett. 2020;11:6921–6934. doi: 10.1021/acs.jpclett.0c00191. PubMed DOI

Raza M.A., Li F., Que M., Zhu L., Chen X. Photocatalytic reduction of CO2 by halide perovskites: recent advances and future perspectives. Mater. Adv. 2021;2:7187–7209. doi: 10.1039/D1MA00703C. DOI

Khan M., Akmal Z., Tayyab M., Mansoor S., Zeb A., Ye Z., Zhang J., Wu S., Wang L. MOFs materials as photocatalysts for CO2 reduction: Progress, challenges and perspectives. Carbon Capture Sci. Tech. 2024;11 doi: 10.1016/j.ccst.2024.100191. DOI

Sena M.S., Cui J., Baghdadi Y., Rattner E., Daboczi M., Lopes-Moriyama A.L., dos Santos A.G., Eslava S. Lead-Free Halide Perovskite Cs2AgBiBr6/Bismuthene Composites for Improved CH4 Production in Photocatalytic CO2 Reduction. ACS Appl. Energy Mater. 2023;6:10193–10204. doi: 10.1021/acsaem.2c03105. PubMed DOI PMC

Wu L.-Y., Mu Y.-F., Guo X.-X., Zhang W., Zhang Z.-M., Zhang M., Lu T.-B. Encapsulating Perovskite Quantum Dots in Iron-Based Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2019;58:9491–9495. doi: 10.1002/anie.201904537. PubMed DOI

Cheng R., Debroye E., Hofkens J., Roeffaers M.B.J. Efficient Photocatalytic CO2 Reduction with MIL-100(Fe)-CsPbBr3 Composites. Catal. 2020;10:1352. doi: 10.3390/catal10111352. DOI

Zhou M., Wang Z., Mei A., Yang Z., Chen W., Ou S., Wang S., Chen K., Reiss P., Qi K., et al. Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework. Nat. Commun. 2023;14:2473. doi: 10.1038/s41467-023-37545-2. PubMed DOI PMC

Jayaramulu K., Masa J., Morales D.M., Tomanec O., Ranc V., Petr M., Wilde P., Chen Y.-T., Zboril R., Schuhmann W., Fischer R.A. Ultrathin 2D Cobalt Zeolite-Imidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution. Adv. Sci. 2018;5 doi: 10.1002/advs.201801029. PubMed DOI PMC

Grandhi G.K., Viswanath N.S.M., Cho H.B., Han J.H., Kim S.M., Choi S., Im W.B. Mechanochemistry as a Green Route: Synthesis, Thermal Stability, and Postsynthetic Reversible Phase Transformation of Highly-Luminescent Cesium Copper Halides. J. Phys. Chem. Lett. 2020;11:7723–7729. doi: 10.1021/acs.jpclett.0c02384. PubMed DOI

Magdalin A.E., Nixon P.D., Jayaseelan E., Sivakumar M., Devi S.K.N., Subathra M.S.P., Kumar N.M., Ananthi N. Development of lead-free perovskite solar cells: Opportunities, challenges, and future technologies. Results Eng. 2023;20 doi: 10.1016/j.rineng.2023.101438. DOI

Wang X., Zhang T., Lou Y., Zhao Y. All-inorganic lead-free perovskites for optoelectronic applications. Mater. Chem. Front. 2019;3:365–375. doi: 10.1039/C8QM00611C. DOI

de Souza Carvalho T.A., Magalhaes L.F., do Livramento Santos C.I., de Freitas T.A.Z., Carvalho Vale B.R., Vale da Fonseca A.F., Schiavon M.A. Lead-Free Metal Halide Perovskite Nanocrystals: From Fundamentals to Applications. Chem. Eur J. 2023;29 doi: 10.1002/chem.202202518. PubMed DOI

Getachew G., Wibrianto A., Rasal A.S., Kizhepat S., Dirersa W.B., Gurav V., Chang J.-Y. Lead-free metal halide perovskites as the rising star in photocatalysis: The past, present, and prospective. Prog. Mater. Sci. 2023;140 doi: 10.1016/j.pmatsci.2023.101192. DOI

Kukkar P., Kim K.-H., Kukkar D., Singh P. Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications. Coord. Chem. Rev. 2021;446 doi: 10.1016/j.ccr.2021.214109. DOI

Chen B., Yang Z., Zhu Y., Xia Y. Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A. 2014;2:16811–16831. doi: 10.1039/C4TA02984D. DOI

Sun Y., Zhang N., Yue Y., Xiao J., Huang X., Ishag A. Recent advances in the application of zeolitic imidazolate frameworks (ZIFs) in environmental remediation: a review. Environ. Sci.: Nano. 2022;9:4069–4092. doi: 10.1039/D2EN00601D. DOI

Sankar S.S., Karthick K., Sangeetha K., Karmakar A., Kundu S. Transition-Metal-Based Zeolite Imidazolate Framework Nanofibers via an Electrospinning Approach: A Review. ACS Omega. 2020;5:57–67. doi: 10.1021/acsomega.9b03615. PubMed DOI PMC

Zhao P., Lampronti G.I., Lloyd G.O., Wharmby M.T., Facq S., Cheetham A.K., Redfern S.A.T. Phase Transitions in Zeolitic Imidazolate Framework 7: The Importance of Framework Flexibility and Guest-Induced Instability. Chem. Mater. 2014;26:1767–1769. doi: 10.1021/cm500407f. PubMed DOI PMC

Yang T., Petricek V., Wan W., Wei Z., Sun J. Mullite-derivative Bi2MnxAl7−xO14 (x ∼ 1): structure determination by powder X-ray diffraction from a multi-phase sample. Dalton Trans. 2012;41:2884–2889. doi: 10.1039/C2DT11855F. PubMed DOI

Jun T., Sim K., Iimura S., Sasase M., Kamioka H., Kim J., Hosono H. Lead-Free Highly Efficient Blue-Emitting Cs3Cu2I5 with 0D Electronic Structure. Adv. Mater. 2018;30 doi: 10.1002/adma.201804547. PubMed DOI

Wang Y., Zhang J., Cheng X., Sha Y., Xu M., Su Z., Hu J., Yao L. ZIF-9(iii) nanosheets synthesized in ionic liquid/ethanol mixture for efficient photocatalytic hydrogen production. Nanoscale. 2022;14:11012–11017. doi: 10.1039/D2NR03139F. PubMed DOI

Beheshti M., Saeidi M., Adel-Rastkhiz M., Shahrestani S., Zarrabi A., Bai J., Simchi A., Akbarmolaie S. Efficient electrochemical CO2 conversion by cobalt-based metal organic frameworks modified by bimetallic gold–silver nanostructures. Cat. Sci. Tech. 2023;13:3645–3654. doi: 10.1039/D3CY00373F. DOI

Kalauni K., Vedrtnam A., Wdowin M., Chaturvedi S. ZIF for CO2 Capture: Structure, Mechanism, Optimization, and Modeling. Processes. 2022;10:2689. doi: 10.3390/pr10122689. DOI

Karamad M., Hansen H.A., Rossmeisl J., Nørskov J.K. Mechanistic Pathway in the Electrochemical Reduction of CO2 on RuO2. ACS Cat. 2015;5:4075–4081. doi: 10.1021/cs501542n. DOI

Tang C., Chen C., Xu W., Xu L. Design of doped cesium lead halide perovskite as a photo-catalytic CO2 reduction catalyst. J. Mater. Chem. A. 2019;7:6911–6919. doi: 10.1039/C9TA00550A. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...