Tailoring Functional Graphene-Derived Geopolymer Nanocomposites: Interfacial Interactions and Mechanical Strength Enhancement
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40666717
PubMed Central
PMC12257412
DOI
10.1021/acsmaterialsau.5c00028
Knihovny.cz E-zdroje
- Klíčová slova
- compressive strength, density functional theory (DFT), fly ash (FA), functional graphene derivatives, geopolymers, interfacial chemistry, water absorption,
- Publikační typ
- časopisecké články MeSH
Geopolymers are emerging as sustainable alternatives to Ordinary Portland Cement (OPC), offering high strength, lightweight properties, and a lower environmental impact, making them promising materials for green concrete technologies. In this study, we synthesized graphene-based geopolymer nanocomposites using various functional graphene derivatives, such as graphene oxide (GO), sulfonated graphene oxide (G-SO3H) thiographene (G-SH), and phosphate graphene (G-PO3H), along with alumina- and silica-rich waste materials, such as fly ash and dolomite, to enhance mechanical properties, including setting time, flowability, compressive strength, and water absorption. The functional groups on graphene derivatives improve the particle dispersion and matrix density, enhancing compressive strength, while Raman spectroscopy reveals spectral shifts at interfaces of phosphate graphene with dolomite and fly ash, indicating interactions. The resultant FDGP exhibits a significantly higher compressive strength of 45.60 MPa at 7 days and 50.20 MPa at 28 days compared to GO, G-SH, and G-SO3H. The high concentration of phosphate functional groups promotes strong interactions with the geopolymer matrix, improving its workability. Furthermore, density functional theory (DFT) calculations elucidate the role of functional groups in graphene-based geopolymer concrete, enhancing molecular interactions and promoting robust interfacial adhesion with the geopolymer matrix for a superior performance. We studied the time-dependent interactions of functionalized graphene oxide phosphate using DFT and other characterization methods, revealing strong hydrogen bonding that enhances dispersion and reinforcement within the geopolymer matrix.
Department of Civil Engineering Indian Institute of Technology Jammu Jammu and Kashmir 181221 India
Rajiv Gandhi Centre for Biotechnology Thycaud P O Poojappura Thiruvananthapuram 695014 India
Zobrazit více v PubMed
Scrivener K. L., John V. M., Gartner E. M.. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018;114:2. doi: 10.1016/j.cemconres.2018.03.015. DOI
Singh N. B., Middendorf B.. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020;237:117455. doi: 10.1016/j.conbuildmat.2019.117455. DOI
Verma M., Upreti K., Vats P., Singh S., Singh P., Dev N., Kumar Mishra D., Tiwari B.. Experimental Analysis of Geopolymer Concrete: A Sustainable and Economic Concrete Using the Cost Estimation Model. Adv. Mater. Sci. Eng. 2022;2022(1):1–16. doi: 10.1155/2022/7488254. DOI
Chandra S. S., Shakor P., Hasan S., Awuzie B. O., Singh A. K., Rauniyar A., Karakouzian M.. Evaluating the potential of geopolymer concrete as a sustainable alternative for thin white-topping pavement. Front. Mater. 2023;10:1181474. doi: 10.3389/fmats.2023.1181474. DOI
Cong P., Cheng Y.. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng., Engl. Ed. 2021;8(3):283. doi: 10.1016/j.jtte.2021.03.004. DOI
Odeh A., Al-Fakih A., Alghannam M., Al-Ainya M., Khalid H., Al-Shugaa M. A., Thomas B. S., Aswin M.. Recent Progress in Geopolymer Concrete Technology: A Review. Iran. J. Sci. Technol., Trans. Civ. Eng. 2024;48(5):3285. doi: 10.1007/s40996-024-01391-z. DOI
Almutairi A. L., Tayeh B. A., Adesina A., Isleem H. F., Zeyad A. M.. Potential applications of geopolymer concrete in construction: A review. Case Stud. Constr. Mater. 2021;15:e00733. doi: 10.1016/j.cscm.2021.e00733. DOI
Alaneme G. U., Olonade K. A., Esenogho E., Lawan M. M.. Proposed simplified methodological approach for designing geopolymer concrete mixtures. Sci. Rep. 2024;14(1):15191. doi: 10.1038/s41598-024-66093-y. PubMed DOI PMC
Yang H., Li H., Jiang J.. Predictive modeling of compressive strength of geopolymer concrete before and after high temperature applying machine learning algorithms. Struct. Concr. 2025;26:1699. doi: 10.1002/suco.202400552. DOI
Furtos G., Sarosi C., Moldovan M., Korniejenko K., Łach M., Ungureanu V., Miller L., Nováková I.. The Influence of Alkali-Resistant MiniBars on the Mechanical Properties of Geopolymer Composites. Materials. 2025;18:778. doi: 10.3390/ma18040778. PubMed DOI PMC
Furtos G., Prodan D., Sarosi C., Moldovan M., Korniejenko K., Miller L., Fiala L., Iveta N.. Mechanical Properties of MiniBars Basalt Fiber-Reinforced Geopolymer Composites. Materials. 2024;17:248. doi: 10.3390/ma17010248. PubMed DOI PMC
Solouki A., Fathollahi A., Viscomi G., Tataranni P., Valdrè G., Coupe S. J., Sangiorgi C.. Thermally Treated Waste Silt as Filler in Geopolymer Cement. Materials. 2021;14:5102. doi: 10.3390/ma14175102. PubMed DOI PMC
Nguyen V. V., Le V. S., Louda P., Szczypiński M. M., Ercoli R., Růžek V., Łoś P., Prałat K., Plaskota P., Pacyniak T.. et al. Low-Density Geopolymer Composites for the Construction Industry. Polymers. 2022;14:304. doi: 10.3390/polym14020304. PubMed DOI PMC
Shamsol A. l. S., Apandi N. M., Zailani W. W. A., Izwan K. N. K., Zakaria M., Zulkarnain N. N.. Graphene oxide as carbon-based materials: A review of geopolymer with addition of graphene oxide towards sustainable construction materials. Constr. Build. Mater. 2024;411:134410. doi: 10.1016/j.conbuildmat.2023.134410. DOI
Tay C. H., Norkhairunnisa M.. Mechanical Strength of Graphene Reinforced Geopolymer Nanocomposites: A Review. Front. Mater. 2021;8:661013. doi: 10.3389/fmats.2021.661013. DOI
Maglad A. M., Zaid O., Arbili M. M., Ascensão G., Serbănoiu A. A., Grădinaru C. M., García R. M., Qaidi S. M. A., Althoey F., de Prado-Gil J.. A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide. Buildings. 2022;12(8):1066. doi: 10.3390/buildings12081066. DOI
Geim A. K., Novoselov K. S.. The rise of graphene. Nat. Mater. 2007;6(3):183. doi: 10.1038/nmat1849. PubMed DOI
Mbayachi V. B., Ndayiragije E., Sammani T., Taj S., Mbuta E. R., khan A. u.. Graphene synthesis, characterization and its applications: A review. Results Chem. 2021;3:100163. doi: 10.1016/j.rechem.2021.100163. DOI
Allen M. J., Tung V. C., Kaner R. B.. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010;110(1):132. doi: 10.1021/cr900070d. PubMed DOI
Ji X., Xu Y., Zhang W., Cui L., Liu J.. Review of functionalization, structure and properties of graphene/polymer composite fibers. Composites, Part A. 2016;87:29. doi: 10.1016/j.compositesa.2016.04.011. DOI
Poorna A. R., Saravanathamizhan R., Balasubramanian N.. Graphene and graphene-like structure from biomass for Electrochemical Energy Storage application- A Review. Electrochem. Sci. Adv. 2021;1(3):e2000028. doi: 10.1002/elsa.202000028. DOI
Georgakilas V., Otyepka M., Bourlinos A. B., Chandra V., Kim N., Kemp K. C., Hobza P., Zboril R., Kim K. S.. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012;112(11):6156. doi: 10.1021/cr3000412. PubMed DOI
Jayaramulu K., Mukherjee S., Morales D. M., Dubal D. P., Nanjundan A. K., Schneemann A., Masa J., Kment S., Schuhmann W.. et al. Graphene-Based Metal–Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem. Rev. 2022;122(24):17241. doi: 10.1021/acs.chemrev.2c00270. PubMed DOI PMC
Brisebois P. P., Siaj M.. Harvesting graphene oxide – years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C. 2020;8(5):1517. doi: 10.1039/C9TC03251G. DOI
Chen D., Feng H., Li J.. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012;112(11):6027. doi: 10.1021/cr300115g. PubMed DOI
Ajala O. J., Tijani J. O., Bankole M. T., Abdulkareem A. S.. A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment. Environ. Nanotechnol., Monit. Manage. 2022;18:100673. doi: 10.1016/j.enmm.2022.100673. DOI
Mohammed S.. Graphene oxide: A mini-review on the versatility and challenges as a membrane material for solvent-based separation. Chem. Eng. J. Adv. 2022;12:100392. doi: 10.1016/j.ceja.2022.100392. DOI
Guo S., Garaj S., Bianco A., Ménard-Moyon C.. Controlling covalent chemistry on graphene oxide. Nat. Rev. Phys. 2022;4(4):247. doi: 10.1038/s42254-022-00422-w. DOI
Intarabut D., Sukontasukkul P., Phoo-Ngernkham T., Zhang H., Yoo D. Y., Limkatanyu S., Chindaprasirt P.. Influence of Graphene Oxide Nanoparticles on Bond-Slip Responses between Fiber and Geopolymer Mortar. Nanomaterials. 2022;12(6):943. doi: 10.3390/nano12060943. PubMed DOI PMC
Danial N. S., Che Halin D. S., Ramli M. M., Abdullah M. M. A., Mohd Salleh M. A. A., Mat Isa S. S., Talip L. F. A., Mazlan N. S.. Graphene geopolymer hybrid: A review on mechanical properties and piezoelectric effect. IOP Conf. Ser.:Mater. Sci. Eng. 2019;572(1):012038. doi: 10.1088/1757-899X/572/1/012038. DOI
Liu C., Huang X., Wu Y.-Y., Deng X., Liu J., Zheng Z., Hui D.. Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnol. Rev. 2020;9(1):155–169. doi: 10.1515/ntrev-2020-0014. DOI
Kumar S., Bheel N., Zardari S., Alraeeini A. S., Almaliki A. H., Benjeddou O.. Effect of graphene oxide on mechanical, deformation and drying shrinkage properties of concrete reinforced with fly ash as cementitious material by using RSM modelling. Sci. Rep. 2024;14(1):18675. doi: 10.1038/s41598-024-69601-2. PubMed DOI PMC
Yan S., He P., Jia D., Duan X., Yang Z., Wang S., Zhou Y.. Effects of graphene oxide on the geopolymerization mechanism determined by quenching the reaction at intermediate states. RSC Adv. 2017;7(22):13498. doi: 10.1039/C6RA26340B. DOI
Saafi M. A., Tang L., Fung J., Rahman M., Liggat J. J. J. C.. Enhanced properties of graphene/fly ash geopolymeric composite cement. Cem. Concr. Res. 2015;67:292–299. doi: 10.1016/j.cemconres.2014.08.011. DOI
Qureshi, T. ; Vickery, C. . Proceedings of the 2nd International Conference on Advances in Civil Infrastructure and Construction Materials (CICM 2023), Volume 1; Springer: Cham, 2024, p 25.
Izadifar M., Sekkal W., Dubyey L., Ukrainczyk N., Zaoui A., Koenders E.. Theoretical Studies of Adsorption Reactions of Aluminosilicate Aqueous Species on Graphene-Based Nanomaterials: Implications for Geopolymer Binders. ACS Appl. Nano Mater. 2023;6(18):16318. doi: 10.1021/acsanm.3c02438. DOI
Yu H., Zhang B., Bulin C., Li R., Xing R.. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016;6(1):36143. doi: 10.1038/srep36143. PubMed DOI PMC
Vasudevan S., Lakshmi J.. The adsorption of phosphate by graphene from aqueous solution. RSC Adv. 2012;2(12):5234. doi: 10.1039/c2ra20270k. DOI
Daneshmandi L., Holt B. D., Arnold A. M., Laurencin C. T., Sydlik S. A.. Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Sci. Rep. 2022;12(1):6960. doi: 10.1038/s41598-022-10603-3. PubMed DOI PMC
Showman M. S., Omara R. Y., El-Ashtoukhy E. S. Z., Farag H. A., El-Latif M. M. A.. Formulation of silver phosphate/graphene/silica nanocomposite for enhancing the photocatalytic degradation of trypan blue dye in aqueous solution. Sci. Rep. 2024;14(1):15885. doi: 10.1038/s41598-024-66054-5. PubMed DOI PMC
Tian J., Li H., Asiri A. M., Al-Youbi A. O., Sun X.. Photoassisted Preparation of Cobalt Phosphate/Graphene Oxide Composites: A Novel Oxygen-Evolving Catalyst with High Efficiency. Small. 2013;9(16):2709. doi: 10.1002/smll.201203202. PubMed DOI
Gil-Gavilán D. G., Amaro-Gahete J., Rojas-Luna R., Benítez A., Estevez R., Esquivel D., Bautista F. M., Romero-Salguero F. J.. Sulfonated Graphene-Based Materials as Heterogeneous Acid Catalysts for Solketal Synthesis by Acetalization of Glycerol. ChemCatChem. 2024;16(20):e202400251. doi: 10.1002/cctc.202400251. DOI
Luong N. D., Sinh L. H., Johansson L.-S., Campell J., Seppälä J.. Functional Graphene by Thiol-ene Click. Chemistry. 2015;21(8):3183. doi: 10.1002/chem.201405734. PubMed DOI PMC
Sturala J., Hermanová S., Artigues L., Sofer Z., Pumera M.. Thiographene synthesized from fluorographene via xanthogenate with immobilized enzymes for environmental remediation. Nanoscale. 2019;11(22):10695. doi: 10.1039/C9NR02376C. PubMed DOI
Urbanová V., Holá K., Bourlinos A. B., Čépe K., Ambrosi A., Loo A. H., Pumera M., Karlický F., Otyepka M., Zbořil R.. Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015;27(14):2305. doi: 10.1002/adma.201500094. PubMed DOI
Gomes S., François M.. Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and 29Si MAS NMR. Cem. Concr. Res. 2000;30(2):175. doi: 10.1016/S0008-8846(99)00226-4. DOI
Rathee M., Surendran H. K., Narayana C., Lo R., Misra A., Jayaramulu K.. Interfacial Chemistry of Ti3C2Tx MXene in Aluminosilicate Geopolymers for Enhanced Mechanical Strength. ACS Appl. Eng. Mater. 2024;2(8):2027. doi: 10.1021/acsaenm.4c00184. DOI
Samtani M., Skrzypczak-Janktun E., Dollimore D., Alexander K.. Thermal analysis of ground dolomite, confirmation of results using an X-ray powder diffraction methodology. Thermochim. Acta. 2001;367–368:297. doi: 10.1016/S0040-6031(00)00663-8. DOI
Potgieter-Vermaak S. S., Potgieter J. H., Belleil M., DeWeerdt F., Van Grieken R.. The application of Raman spectrometry to the investigation of cement: Part II: A micro-Raman study of OPC, slag and fly ash. Cem. Concr. Res. 2006;36(4):663. doi: 10.1016/j.cemconres.2005.09.010. DOI
Campbell J. A., Smith R. D., Davis L. E., Smith K. L.. Characterization of micron-size flyash particles by X-ray photoelection spectroscopy (ESCA) Sci. Total Environ. 1979;12(1):75. doi: 10.1016/0048-9697(79)90007-X. DOI
Wang A., Zhang C., Sun W.. Fly ash effects: I. The morphological effect of fly ash. Cem. Concr. Res. 2003;33(12):2023. doi: 10.1016/S0008-8846(03)00217-5. DOI
Kresse G., Furthmüller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6(1):15. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59(3):1758. doi: 10.1103/PhysRevB.59.1758. DOI