Tailoring Functional Graphene-Derived Geopolymer Nanocomposites: Interfacial Interactions and Mechanical Strength Enhancement

. 2025 Jul 09 ; 5 (4) : 698-708. [epub] 20250509

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40666717

Geopolymers are emerging as sustainable alternatives to Ordinary Portland Cement (OPC), offering high strength, lightweight properties, and a lower environmental impact, making them promising materials for green concrete technologies. In this study, we synthesized graphene-based geopolymer nanocomposites using various functional graphene derivatives, such as graphene oxide (GO), sulfonated graphene oxide (G-SO3H) thiographene (G-SH), and phosphate graphene (G-PO3H), along with alumina- and silica-rich waste materials, such as fly ash and dolomite, to enhance mechanical properties, including setting time, flowability, compressive strength, and water absorption. The functional groups on graphene derivatives improve the particle dispersion and matrix density, enhancing compressive strength, while Raman spectroscopy reveals spectral shifts at interfaces of phosphate graphene with dolomite and fly ash, indicating interactions. The resultant FDGP exhibits a significantly higher compressive strength of 45.60 MPa at 7 days and 50.20 MPa at 28 days compared to GO, G-SH, and G-SO3H. The high concentration of phosphate functional groups promotes strong interactions with the geopolymer matrix, improving its workability. Furthermore, density functional theory (DFT) calculations elucidate the role of functional groups in graphene-based geopolymer concrete, enhancing molecular interactions and promoting robust interfacial adhesion with the geopolymer matrix for a superior performance. We studied the time-dependent interactions of functionalized graphene oxide phosphate using DFT and other characterization methods, revealing strong hydrogen bonding that enhances dispersion and reinforcement within the geopolymer matrix.

Zobrazit více v PubMed

Scrivener K. L., John V. M., Gartner E. M.. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018;114:2. doi: 10.1016/j.cemconres.2018.03.015. DOI

Singh N. B., Middendorf B.. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020;237:117455. doi: 10.1016/j.conbuildmat.2019.117455. DOI

Verma M., Upreti K., Vats P., Singh S., Singh P., Dev N., Kumar Mishra D., Tiwari B.. Experimental Analysis of Geopolymer Concrete: A Sustainable and Economic Concrete Using the Cost Estimation Model. Adv. Mater. Sci. Eng. 2022;2022(1):1–16. doi: 10.1155/2022/7488254. DOI

Chandra S. S., Shakor P., Hasan S., Awuzie B. O., Singh A. K., Rauniyar A., Karakouzian M.. Evaluating the potential of geopolymer concrete as a sustainable alternative for thin white-topping pavement. Front. Mater. 2023;10:1181474. doi: 10.3389/fmats.2023.1181474. DOI

Cong P., Cheng Y.. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng., Engl. Ed. 2021;8(3):283. doi: 10.1016/j.jtte.2021.03.004. DOI

Odeh A., Al-Fakih A., Alghannam M., Al-Ainya M., Khalid H., Al-Shugaa M. A., Thomas B. S., Aswin M.. Recent Progress in Geopolymer Concrete Technology: A Review. Iran. J. Sci. Technol., Trans. Civ. Eng. 2024;48(5):3285. doi: 10.1007/s40996-024-01391-z. DOI

Almutairi A. L., Tayeh B. A., Adesina A., Isleem H. F., Zeyad A. M.. Potential applications of geopolymer concrete in construction: A review. Case Stud. Constr. Mater. 2021;15:e00733. doi: 10.1016/j.cscm.2021.e00733. DOI

Alaneme G. U., Olonade K. A., Esenogho E., Lawan M. M.. Proposed simplified methodological approach for designing geopolymer concrete mixtures. Sci. Rep. 2024;14(1):15191. doi: 10.1038/s41598-024-66093-y. PubMed DOI PMC

Yang H., Li H., Jiang J.. Predictive modeling of compressive strength of geopolymer concrete before and after high temperature applying machine learning algorithms. Struct. Concr. 2025;26:1699. doi: 10.1002/suco.202400552. DOI

Furtos G., Sarosi C., Moldovan M., Korniejenko K., Łach M., Ungureanu V., Miller L., Nováková I.. The Influence of Alkali-Resistant MiniBars on the Mechanical Properties of Geopolymer Composites. Materials. 2025;18:778. doi: 10.3390/ma18040778. PubMed DOI PMC

Furtos G., Prodan D., Sarosi C., Moldovan M., Korniejenko K., Miller L., Fiala L., Iveta N.. Mechanical Properties of MiniBars Basalt Fiber-Reinforced Geopolymer Composites. Materials. 2024;17:248. doi: 10.3390/ma17010248. PubMed DOI PMC

Solouki A., Fathollahi A., Viscomi G., Tataranni P., Valdrè G., Coupe S. J., Sangiorgi C.. Thermally Treated Waste Silt as Filler in Geopolymer Cement. Materials. 2021;14:5102. doi: 10.3390/ma14175102. PubMed DOI PMC

Nguyen V. V., Le V. S., Louda P., Szczypiński M. M., Ercoli R., Růžek V., Łoś P., Prałat K., Plaskota P., Pacyniak T.. et al. Low-Density Geopolymer Composites for the Construction Industry. Polymers. 2022;14:304. doi: 10.3390/polym14020304. PubMed DOI PMC

Shamsol A. l. S., Apandi N. M., Zailani W. W. A., Izwan K. N. K., Zakaria M., Zulkarnain N. N.. Graphene oxide as carbon-based materials: A review of geopolymer with addition of graphene oxide towards sustainable construction materials. Constr. Build. Mater. 2024;411:134410. doi: 10.1016/j.conbuildmat.2023.134410. DOI

Tay C. H., Norkhairunnisa M.. Mechanical Strength of Graphene Reinforced Geopolymer Nanocomposites: A Review. Front. Mater. 2021;8:661013. doi: 10.3389/fmats.2021.661013. DOI

Maglad A. M., Zaid O., Arbili M. M., Ascensão G., Serbănoiu A. A., Grădinaru C. M., García R. M., Qaidi S. M. A., Althoey F., de Prado-Gil J.. A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide. Buildings. 2022;12(8):1066. doi: 10.3390/buildings12081066. DOI

Geim A. K., Novoselov K. S.. The rise of graphene. Nat. Mater. 2007;6(3):183. doi: 10.1038/nmat1849. PubMed DOI

Mbayachi V. B., Ndayiragije E., Sammani T., Taj S., Mbuta E. R., khan A. u.. Graphene synthesis, characterization and its applications: A review. Results Chem. 2021;3:100163. doi: 10.1016/j.rechem.2021.100163. DOI

Allen M. J., Tung V. C., Kaner R. B.. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010;110(1):132. doi: 10.1021/cr900070d. PubMed DOI

Ji X., Xu Y., Zhang W., Cui L., Liu J.. Review of functionalization, structure and properties of graphene/polymer composite fibers. Composites, Part A. 2016;87:29. doi: 10.1016/j.compositesa.2016.04.011. DOI

Poorna A. R., Saravanathamizhan R., Balasubramanian N.. Graphene and graphene-like structure from biomass for Electrochemical Energy Storage application- A Review. Electrochem. Sci. Adv. 2021;1(3):e2000028. doi: 10.1002/elsa.202000028. DOI

Georgakilas V., Otyepka M., Bourlinos A. B., Chandra V., Kim N., Kemp K. C., Hobza P., Zboril R., Kim K. S.. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012;112(11):6156. doi: 10.1021/cr3000412. PubMed DOI

Jayaramulu K., Mukherjee S., Morales D. M., Dubal D. P., Nanjundan A. K., Schneemann A., Masa J., Kment S., Schuhmann W.. et al. Graphene-Based Metal–Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem. Rev. 2022;122(24):17241. doi: 10.1021/acs.chemrev.2c00270. PubMed DOI PMC

Brisebois P. P., Siaj M.. Harvesting graphene oxide – years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C. 2020;8(5):1517. doi: 10.1039/C9TC03251G. DOI

Chen D., Feng H., Li J.. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012;112(11):6027. doi: 10.1021/cr300115g. PubMed DOI

Ajala O. J., Tijani J. O., Bankole M. T., Abdulkareem A. S.. A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment. Environ. Nanotechnol., Monit. Manage. 2022;18:100673. doi: 10.1016/j.enmm.2022.100673. DOI

Mohammed S.. Graphene oxide: A mini-review on the versatility and challenges as a membrane material for solvent-based separation. Chem. Eng. J. Adv. 2022;12:100392. doi: 10.1016/j.ceja.2022.100392. DOI

Guo S., Garaj S., Bianco A., Ménard-Moyon C.. Controlling covalent chemistry on graphene oxide. Nat. Rev. Phys. 2022;4(4):247. doi: 10.1038/s42254-022-00422-w. DOI

Intarabut D., Sukontasukkul P., Phoo-Ngernkham T., Zhang H., Yoo D. Y., Limkatanyu S., Chindaprasirt P.. Influence of Graphene Oxide Nanoparticles on Bond-Slip Responses between Fiber and Geopolymer Mortar. Nanomaterials. 2022;12(6):943. doi: 10.3390/nano12060943. PubMed DOI PMC

Danial N. S., Che Halin D. S., Ramli M. M., Abdullah M. M. A., Mohd Salleh M. A. A., Mat Isa S. S., Talip L. F. A., Mazlan N. S.. Graphene geopolymer hybrid: A review on mechanical properties and piezoelectric effect. IOP Conf. Ser.:Mater. Sci. Eng. 2019;572(1):012038. doi: 10.1088/1757-899X/572/1/012038. DOI

Liu C., Huang X., Wu Y.-Y., Deng X., Liu J., Zheng Z., Hui D.. Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnol. Rev. 2020;9(1):155–169. doi: 10.1515/ntrev-2020-0014. DOI

Kumar S., Bheel N., Zardari S., Alraeeini A. S., Almaliki A. H., Benjeddou O.. Effect of graphene oxide on mechanical, deformation and drying shrinkage properties of concrete reinforced with fly ash as cementitious material by using RSM modelling. Sci. Rep. 2024;14(1):18675. doi: 10.1038/s41598-024-69601-2. PubMed DOI PMC

Yan S., He P., Jia D., Duan X., Yang Z., Wang S., Zhou Y.. Effects of graphene oxide on the geopolymerization mechanism determined by quenching the reaction at intermediate states. RSC Adv. 2017;7(22):13498. doi: 10.1039/C6RA26340B. DOI

Saafi M. A., Tang L., Fung J., Rahman M., Liggat J. J. J. C.. Enhanced properties of graphene/fly ash geopolymeric composite cement. Cem. Concr. Res. 2015;67:292–299. doi: 10.1016/j.cemconres.2014.08.011. DOI

Qureshi, T. ; Vickery, C. . Proceedings of the 2nd International Conference on Advances in Civil Infrastructure and Construction Materials (CICM 2023), Volume 1; Springer: Cham, 2024, p 25.

Izadifar M., Sekkal W., Dubyey L., Ukrainczyk N., Zaoui A., Koenders E.. Theoretical Studies of Adsorption Reactions of Aluminosilicate Aqueous Species on Graphene-Based Nanomaterials: Implications for Geopolymer Binders. ACS Appl. Nano Mater. 2023;6(18):16318. doi: 10.1021/acsanm.3c02438. DOI

Yu H., Zhang B., Bulin C., Li R., Xing R.. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016;6(1):36143. doi: 10.1038/srep36143. PubMed DOI PMC

Vasudevan S., Lakshmi J.. The adsorption of phosphate by graphene from aqueous solution. RSC Adv. 2012;2(12):5234. doi: 10.1039/c2ra20270k. DOI

Daneshmandi L., Holt B. D., Arnold A. M., Laurencin C. T., Sydlik S. A.. Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Sci. Rep. 2022;12(1):6960. doi: 10.1038/s41598-022-10603-3. PubMed DOI PMC

Showman M. S., Omara R. Y., El-Ashtoukhy E. S. Z., Farag H. A., El-Latif M. M. A.. Formulation of silver phosphate/graphene/silica nanocomposite for enhancing the photocatalytic degradation of trypan blue dye in aqueous solution. Sci. Rep. 2024;14(1):15885. doi: 10.1038/s41598-024-66054-5. PubMed DOI PMC

Tian J., Li H., Asiri A. M., Al-Youbi A. O., Sun X.. Photoassisted Preparation of Cobalt Phosphate/Graphene Oxide Composites: A Novel Oxygen-Evolving Catalyst with High Efficiency. Small. 2013;9(16):2709. doi: 10.1002/smll.201203202. PubMed DOI

Gil-Gavilán D. G., Amaro-Gahete J., Rojas-Luna R., Benítez A., Estevez R., Esquivel D., Bautista F. M., Romero-Salguero F. J.. Sulfonated Graphene-Based Materials as Heterogeneous Acid Catalysts for Solketal Synthesis by Acetalization of Glycerol. ChemCatChem. 2024;16(20):e202400251. doi: 10.1002/cctc.202400251. DOI

Luong N. D., Sinh L. H., Johansson L.-S., Campell J., Seppälä J.. Functional Graphene by Thiol-ene Click. Chemistry. 2015;21(8):3183. doi: 10.1002/chem.201405734. PubMed DOI PMC

Sturala J., Hermanová S., Artigues L., Sofer Z., Pumera M.. Thiographene synthesized from fluorographene via xanthogenate with immobilized enzymes for environmental remediation. Nanoscale. 2019;11(22):10695. doi: 10.1039/C9NR02376C. PubMed DOI

Urbanová V., Holá K., Bourlinos A. B., Čépe K., Ambrosi A., Loo A. H., Pumera M., Karlický F., Otyepka M., Zbořil R.. Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Adv. Mater. 2015;27(14):2305. doi: 10.1002/adma.201500094. PubMed DOI

Gomes S., François M.. Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and 29Si MAS NMR. Cem. Concr. Res. 2000;30(2):175. doi: 10.1016/S0008-8846(99)00226-4. DOI

Rathee M., Surendran H. K., Narayana C., Lo R., Misra A., Jayaramulu K.. Interfacial Chemistry of Ti3C2Tx MXene in Aluminosilicate Geopolymers for Enhanced Mechanical Strength. ACS Appl. Eng. Mater. 2024;2(8):2027. doi: 10.1021/acsaenm.4c00184. DOI

Samtani M., Skrzypczak-Janktun E., Dollimore D., Alexander K.. Thermal analysis of ground dolomite, confirmation of results using an X-ray powder diffraction methodology. Thermochim. Acta. 2001;367–368:297. doi: 10.1016/S0040-6031(00)00663-8. DOI

Potgieter-Vermaak S. S., Potgieter J. H., Belleil M., DeWeerdt F., Van Grieken R.. The application of Raman spectrometry to the investigation of cement: Part II: A micro-Raman study of OPC, slag and fly ash. Cem. Concr. Res. 2006;36(4):663. doi: 10.1016/j.cemconres.2005.09.010. DOI

Campbell J. A., Smith R. D., Davis L. E., Smith K. L.. Characterization of micron-size flyash particles by X-ray photoelection spectroscopy (ESCA) Sci. Total Environ. 1979;12(1):75. doi: 10.1016/0048-9697(79)90007-X. DOI

Wang A., Zhang C., Sun W.. Fly ash effects: I. The morphological effect of fly ash. Cem. Concr. Res. 2003;33(12):2023. doi: 10.1016/S0008-8846(03)00217-5. DOI

Kresse G., Furthmüller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6(1):15. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI

Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59(3):1758. doi: 10.1103/PhysRevB.59.1758. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...