Mechanical Properties of MiniBars™ Basalt Fiber-Reinforced Geopolymer Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
COFUND-M-ERANET-3-GEOSUMAT, within PNCDI III
Unitatea Executiva Pentru Finantarea Invatamantului Superior Si A Cercetarii Stiintifice Universitare
No. TH80020002
Technology Agency of the Czech Republic
No. 338117
The Research Council of Norway
M-ERA.NET3/2021/70/GEOSUMAT/2022
National Centre for Research and Development
PubMed
38204101
PubMed Central
PMC10779639
DOI
10.3390/ma17010248
PII: ma17010248
Knihovny.cz E-zdroje
- Klíčová slova
- MiniBars, basalt fiber, fly ash, geopolymer composites, mechanical properties,
- Publikační typ
- časopisecké články MeSH
Fly ash-based geopolymers represent a new material, which can be considered an alternative to ordinary Portland cement. MiniBars™ are basalt fiber composites, and they were used to reinforce the geopolymer matrix for the creation of unidirectional MiniBars™ reinforced geopolymer composites (MiniBars™ FRBCs). New materials were obtained by incorporating variable amount of MiniBars™ (0, 12.5, 25, 50, 75 vol.% MiniBars™) in the geopolymer matrix. Geopolymers were prepared by mixing fly ash powder with Na2SiO3 and NaOH as alkaline activators. MiniBars™ FRBCs were cured at 70 °C for 48 h and tested for different mechanical properties. Optical microscopy and SEM were employed to investigate the fillers and MiniBars™ FRBC. MiniBars™ FRBC showed increasing mechanical properties by an increased addition of MiniBars™. The mechanical properties of MiniBars™ FRBC increased more than the geopolymer wtihout MiniBars™: the flexural strength > 11.59-25.97 times, the flexural modulus > 3.33-5.92 times, the tensile strength > 3.50-8.03 times, the tensile modulus > 1.12-1.30 times, and the force load at upper yield tensile strength > 4.18-7.27 times. SEM and optical microscopy analyses were performed on the fractured surface and section of MiniBars™ FRBC and confirmed a good geopolymer network around MiniBars™. Based on our results, MiniBars™ FRBC could be a very promising green material for buildings.
Faculty of Materials Engineering and Physics Cracow University of Technology 31 864 Cracow Poland
Faculty of Science and Technology The Arctic University of Norway N 8505 Narvik Norway
Raluca Ripan Institute of Research in Chemistry Babes Bolyai University 400294 Cluj Napoca Romania
Zobrazit více v PubMed
Ding Y., Yu K., Li M. A review on high-strength engineered cementitious composites (HS-ECC): Design, mechanical property and structural application. Structures. 2022;35:903–921. doi: 10.1016/j.istruc.2021.10.036. DOI
Andrew R.M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data. 2019;11:1675–1710. doi: 10.5194/essd-11-1675-2019. DOI
Drabczyk A., Kudłacik-Kramarczyk S., Korniejenko K., Figiela B., Furtos G. Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development. Materials. 2023;16:3478. doi: 10.3390/ma16093478. PubMed DOI PMC
Korniejenko K., Kozub B., Bąk A., Balamurugan P., Uthayakumar M., Furtos G. Tackling the circular economy challenges—Composites recycling: Used tyres, wind turbine blades, and solar panels. J. Compos. Sci. 2021;5:243. doi: 10.3390/jcs5090243. DOI
Furtos G., Silaghi-Dumitrescu L., Pascuta P., Sarosi C., Korniejenko K. Mechanical properties of wood fiber reinforced geopolymer composites with sand addition. J. Nat. Fibers. 2019;06:1–19. doi: 10.1080/15440478.2019.1621792. DOI
Furtos G., Molnar L., Silaghi-Dumitrescu L., Pascuta P., Korniejenko K. Mechanical and thermal properties of wood fiber reinforced geopolymer composites. J. Nat. Fibers. 2021;7:6676–6691. doi: 10.1080/15440478.2021.1929655. DOI
Davidovits J. Geopolymer Chemistry and Applications. 3rd ed. Institut Géopolymère, Geopolymer Institute; Saint-Quentin, France: 2011. Chapter 21: Geopolymer fiber-composites.
Doğan-Sağlamtimur N. Waste foundry sand usage for building material production: A first geopolymer record in material reuse. Adv. Civ. Eng. 2018;2018:1927135. doi: 10.1155/2018/1927135. DOI
Davidovits J. Global warming impact on the cement and aggregates industries. World Resour. Rev. 1994;6:263–278.
MiniBars™ High Performance Composite Macrofiber for Concrete Reinforcement. [(accessed on 21 November 2023)]. Available online: https://reforcetech.com/technology/minibars/
Shafei B., Kazemian M., Dopko M., Najimi M. State-of-the-art review of capabilities and limitations of polymer and glass fibers used for fiber-reinforced concrete. Materials. 2021;14:409. doi: 10.3390/ma14020409. PubMed DOI PMC
Ranjbar N., Zhang M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020;107:103498. doi: 10.1016/j.cemconcomp.2019.103498. DOI
Sathanandam T., Awoyera P.O., Vijayan V., Sathishkumar K. Low carbon building: Experimental insight on the use of fly ash and glass fibre for making geopolymer concrete. Sustain. Environ. Res. 2017;27:146–153. doi: 10.1016/j.serj.2017.03.005. DOI
Wang T., Fan X., Gao C., Qu C., Liu J., Yu G. The influence of fiber on the mechanical properties of geopolymer concrete: A review. Polymers. 2023;15:827. doi: 10.3390/polym15040827. PubMed DOI PMC
Uzun I. Methods of determining the degree of crystallinity of polymers with X-ray diffraction: A review. J. Polym. Res. 2023;30:394. doi: 10.1007/s10965-023-03744-0. DOI
DURAMUL. [(accessed on 21 November 2023)]. Available online: https://www.washingtonmills.com/products/fused-mullite/duramul.
Fernández-Jiménez A., Palomo A., Criado M. Microstructure development of alkali-activated fly ash cement: A descriptive model. Cem. Concr. Res. 2005;35:1204–1209. doi: 10.1016/j.cemconres.2004.08.021. DOI
Luna-Galiano Y., Leiva C., Arenas C., Fernández-Pereira C. Fly ash based geopolymeric foams using silica fume as pore generation agent. Physical, mechanical and acoustic properties. J. Non-Cryst. Solids. 2018;500:196–204. doi: 10.1016/j.jnoncrysol.2018.07.069. DOI
Baldea B., Silaghi-Dumitrescu L., Furtos G. Fracture load and force load at upper yield of alkaline-resistant glass fiber-reinforced endodontic posts. Polym. Compos. 2017;38:260–267. doi: 10.1002/pc.23583. DOI
Furtos G., Silaghi-Dumitrescu L., Moldovan M., Baldea B., Trusca R., Prejmerean C. Influence of filler/reinforcing agent and post-curing on the flexural properties of woven and unidirectional glass fiber reinforced composites. J. Mater. Sci. 2012;47:3305–3314. doi: 10.1007/s10853-011-6169-1. DOI
Furtos G., Tomoaia-Cotisel M., Baldea B., Prejmerean C. Development and characterization of new AR glass fiber reinforced cements with potential medical applications. J. Appl. Polym. Sci. 2013;128:1266–1273. doi: 10.1002/app.38508. DOI
Muhammad J.H., Yousif A.R. Effect of basalt minibars on the shear strength of BFRP-reinforced high-strength concrete beams. Case Stud. Constr. Mater. 2023;18:e02020. doi: 10.1016/j.cscm.2023.e02020. DOI
Vishu S. Handbook of Plastic Testing Technology. 2nd ed. John Wiley; New York, NY, USA: 1998. p. 546.
DeBoer J., Vermilyea S.G., Brady R.E. The effect of carbon fiber orientation on the fatigue resistance and bending properties of two denture resins. J. Prosthet. Dent. 1984;51:119. doi: 10.1016/S0022-3913(84)80117-1. PubMed DOI
Wang X., He J., Mosallam A.S., Li C., Xin H. The Effects of Fiber Length and Volume on Material Properties and Crack Resistance of Basalt Fiber Reinforced Concrete (BFRC) Adv. Mater. Sci. Eng. 2019;2019:7520549. doi: 10.1155/2019/7520549. DOI