Autonomic modulation, spontaneous baroreflex sensitivity and fatigue in young men after COVID-19

. 2023 Jul 14 ; 72 (3) : 329-336.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37449746

Impaired autonomic modulation and baroreflex sensitivity (BRS) have been reported during and after COVID-19. Both impairments are associated with negative cardiovascular outcomes. If these impairments were to exist undetected in young men after COVID-19, they could lead to negative cardiovascular outcomes. Fatigue is associated with autonomic dysfunction during and after COVID-19. It is unclear if fatigue can be used as an indicator of impaired autonomic modulation and BRS after COVID-19. This study aims to compare parasympathetic modulation, sympathetic modulation, and BRS between young men who had COVID-19 versus controls and to determine if fatigue is associated with impaired autonomic modulation and BRS. Parasympathetic modulation as the high-frequency power of R-R intervals (lnHFR-R), sympathetic modulation as the low-frequency power of systolic blood pressure variability (LFSBP), and BRS as the -index were measured by power spectral density analysis. These variables were compared between 20 young men who had COVID-19 and 24 controls. Independent t-tests and Mann-Whitney U tests indicated no significant difference between the COVID-19 and the control group in: lnHFR-R, P=0.20; LFSBP, P=0.11, and -index, P=0.20. Fatigue was not associated with impaired autonomic modulation or BRS. There is no difference in autonomic modulations or BRS between young men who had COVID-19 compared to controls. Fatigue did not seem to be associated with impaired autonomic modulation or impaired BRS in young men after COVID-19. Findings suggest that young men might not be at increased cardiovascular risk from COVID-19-related dysautonomia and impaired BRS.

Zobrazit více v PubMed

Dani M, Dirksen A, Taraborrelli P, Torocastro M, Panagopoulos D, Sutton R, Lim P. Autonomic dysfuction in 'long COVID' rationale, physiology, and management strategies. Clin Med. 2021;21:e63. doi: 10.7861/clinmed.2020-0896. PubMed DOI PMC

Goldstein D. The extended autonomic system, dyshomeostasis, and COVID-19. Clin Auton Res. 2020;30:299–315. doi: 10.1007/s10286-020-00714-0. PubMed DOI PMC

Stella A, Furlanis G, Frezza N, Valentinotti R, Ajcevic M, Manganotti P. Autonomic dysfunction in post-COVID patients with and without neurological symptoms: a prospective multidomain observational study. J Neurol. 2022;269:587–596. doi: 10.1007/s00415-021-10735-y. PubMed DOI PMC

Leitzke M, Stefanovic D, Meyer J-J, Schimpf S, Schönknecht P. Autonomic balance determines the severity of COVID-19 courses. Bioelectron Med. 2020;6:22. doi: 10.1186/s42234-020-00058-0. PubMed DOI PMC

Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2021;93:250–256. doi: 10.1002/jmv.26232. PubMed DOI PMC

Al-kuraishy H, Al-Gareeb A, Qusti S, Alshammari E, Gyebi G, Batiha G. Covid-19-induced dysautonomia: a menace of sympathetic storm. ASN Neuro. 2021;13:17590914211057635. doi: 10.1177/17590914211057635. PubMed DOI PMC

Konig M, Powell M, Staedtke V, Bai R, Thomas D, Fischer N, Huq H, et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J Clin Invest. 2020;130:3345–3347. doi: 10.1172/JCI139642. PubMed DOI PMC

Leal A, Carvalho M, Rocha I, Mota-Filipe H. Inflammation and autonomic function. In: SVORC P, editor. Autonomic Nervous System. London: IntechOpen; 2018. pp. 67–88. DOI

Fudim M, Qadri Y, Ghadimi K, MacLeod D, Molinger J, Piccini J, et al. Implications for neuromodulation therapy to control inflammation and related organ dysfunction in COVID-19. J Cardiovasc Trans Res. 2020;13:895–899. doi: 10.1007/s12265-020-10031-6. PubMed DOI PMC

Milovanovic B, Djajic V, Djokovic A, Kranjnovic T, Verhaz A, Kovacevic P, Jovanovic S, et al. Assessment of autonomic nervous system dysfunction in the early phase of infection with SARS-CoV-2 virus. Front Neurosci. 2021;15:640835. doi: 10.3389/fnins.2021.640835. PubMed DOI PMC

Becker R. COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis. 2020;50:499–511. doi: 10.1007/s11239-020-02230-4. PubMed DOI PMC

La Rovere M, Bigger J, Jr, Marcus F, Mortara A, Schwartz P ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet. 1998;351:478–484. doi: 10.1016/S0140-6736(97)11144-8. PubMed DOI

Fukuda K, Kanazawa H, Aizawa Y, Ardell J, Skivkumar K. Cardiac innervation and sudden cardiac death. Circ Res. 2015;116:2005–2019. doi: 10.1161/CIRCRESAHA.116.304679. PubMed DOI PMC

Ardell J, Andresen M, Armour J, Billman G, Chen P, Foreman R, Herring N, et al. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol. 2016;594:3877–3909. doi: 10.1113/JP271869. PubMed DOI PMC

Ardell J, Armour J. Neurocardiology: structure-based function. Compr Physiol. 2016;6:1635–1653. doi: 10.1002/cphy.c150046. PubMed DOI

Skivkumar K, Ajijola O, Anand I, Armour J, Chen P, Esler M, Ferrari G, et al. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol. 2016;594:3911–3954. doi: 10.1113/JP271870. PubMed DOI PMC

Goërtz YMJ, Van Herck M, Delbressine JM, Vaes AW, Meys R, Machado FVC, Houben-Wilke S, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 2020;6:00542-2020. doi: 10.1183/23120541.00542-2020. PubMed DOI PMC

Perez-Moreno A, Jhund P, Macdonald M, Petrie M, Cleland J, Böhm M, Veldhuisen D, et al. Fatigue as a predictor of outcome in patients with heart failure: analysis of CORONA (Controlled Rosuvastatin Multinational Trail in Heart Failure) JACC Heart Fail. 2014;2:187–197. doi: 10.1016/j.jchf.2014.01.001. PubMed DOI

Meersman R, Reisman S, Daum M, Zorowitz R, Leifer M, Findley T. Influence of respiration on metabolic, hemodynamic, psychometric, and R-R interval power spectral parameters. Am J Physiol. 1995;269:H1437–H1440. doi: 10.1152/ajpheart.1995.269.4.H1437. PubMed DOI

Malik M. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–1065. doi: 10.1161/01.CIR.93.5.1043. PubMed DOI

Akselrod S, Gordon D, Ubel F, Shannon D, Berger A, Cohen R. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220–222. doi: 10.1126/science.6166045. PubMed DOI

Latchman P, Mathur M, Bartels M, Axtell R, DeMeersman R. Imparied autonomic function in normotensive obese children. Clin Auton Res. 2011;21:319–323. doi: 10.1007/s10286-011-0116-8. PubMed DOI

Pagani M, Lombardi S, Guzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, et al. Power spectral analysis of heart rate and arterial pressure variabilities and a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59:178–193. doi: 10.1161/01.RES.59.2.178. PubMed DOI

Pagani M, Lucini D, Sergi M, Bosisio E, Mela G, Malliani A. Effect of aging and of chronic obstructive pulmonary disease on RR interval. J Auton Nerv Syst. 1996;59:125–132. doi: 10.1016/0165-1838(96)00015-X. PubMed DOI

Eckberg D. Sympathovagal balance: A critical appraisal. Circulation. 1997;96:3224–3232. doi: 10.1161/01.CIR.96.9.3224. PubMed DOI

Robbe H, Mulder L, Rüddel H, Langewitz W, Veldman J, Mulder G. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension. 1987;10:538–543. doi: 10.1161/01.HYP.10.5.538. PubMed DOI

Stella A, Furlanis G, Frezza N, Valentinotti R, Ajcevic M, Manganotti P. Autonomic dysfunction in post-COVID patients with and without neurological symptoms: a prospective multidomain observational study. J Neurol. 2022;269:587–596. doi: 10.1007/s00415-021-10735-y. PubMed DOI PMC

Stute N, Stickford J, Provine V, Augenreich M, Ratchford S, Stickford A. COVID-19 is getting on our nerves: sympathetic neural activity and haemodynamics in young adults recovering from SARS-CoV-2. J Physiol. 2021;599:4269–4285. doi: 10.1113/JP281888. PubMed DOI PMC

Stute N, Szeghy R, Stickford J, Province V, Augenreich M, Ratchford S, Stickford A. Longitudinal observations of sympathetic neural activity and hemodynamics during 6 months recovery from SARS-CoV-2 infection. Physiol Rep. 2022;10:1–12. doi: 10.14814/phy2.15423. PubMed DOI PMC

Zhang D, Anderson A. The sympathetic nervous system and heart failure. Cardiol Clin. 2014;32:33–45. doi: 10.1016/j.ccl.2013.09.010. PubMed DOI PMC

Wyss J. The role of the sympathetic nervous system in hypertension. Curr Opin Nephrol Hypertens. 1993;2:265–273. doi: 10.1097/00041552-199303000-00014. PubMed DOI

Kurtoğlu E, Afsin A, Aktaş İ, Aktürk E, Kutlusoy E, Çağaşar Ö. Altered cardiac autonomic function after recovery from COVID-19. Ann Noninvasive Electrocardial. 2022;27:e12916. doi: 10.1111/anec.12916. PubMed DOI PMC

Soliński M, Pawlak A, Petelczyc M, Buchner T, Aftyka J, Gil R, Król Z, et al. Heart rate variability comparison between young males after 4–6 weeks from the end of SARS-CoV-2 infection and controls. Sci Rep. 2022;12:8832. doi: 10.1038/s41598-022-12844-8. PubMed DOI PMC

Garza N, Nandadeva D, Stephens B, Grotle A, Skow R, Young B, Fadel P. Cardiac baroreflex sensitivity and heart rate variability following COVID-19 in young adults. FASEB J. 2022;36(Suppl 1) doi: 10.1096/fasebj.2022.36.S1.R2241. DOI

Skow R, Garza N, Nandadeva D, Stephens B, Wright A, Grotle A, Young B, et al. Impact of COVID-19 on cardiac autonomic function in healthy young adults: potential role of symptomatology and time since diagnosis. Am J Physiol Heart Circ Physiol. 2022;323:H1206–H1211. doi: 10.1152/ajpheart.00520.2022. PubMed DOI PMC

Zanoli L, Gaudio A, Mikhailidis D, Katsiki N, Castellino N, Cicero L, Geraci G, et al. Vascular dysfunction of COVID-19 is partially reverted in the long-term. Circ Res. 2022;130:1276–1285. doi: 10.1161/CIRCRESAHA.121.320460. PubMed DOI

Bílek R, Danzig V, Grimmichová T. Antiviral activity of amiodarone in SARS-CoV-2 disease. Physiol Res. 2022;71:869–875. doi: 10.33549/physiolres.934974. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...