Low-Density Geopolymer Composites for the Construction Industry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.01.1.02/0.0/0.0/20_321/0025218
Ministry of Industry and Trade
PubMed
35054711
PubMed Central
PMC8781880
DOI
10.3390/polym14020304
PII: polym14020304
Knihovny.cz E-zdroje
- Klíčová slova
- Liapor, carbon fiber grid, ceramic microsphere, light-weight geopolymers, polystyrene, walling materials,
- Publikační typ
- časopisecké články MeSH
The article presents preliminary results in studying reinforced and light-weight geopolymers, which can be employed in buildings, especially for walling. Such materials are very promising for the construction industry having great potential due to their favorable properties such as high mechanical strengths, low thermal conductivity, and low density. Moreover, they also exhibit several advantages from an economic and ecological point of view. The present study exanimated the use of specific fillers for the metakaolin-based light-weight geopolymers, emphasizing the above-mentioned physical properties. This research also investigated the electromagnetic shielding ability of the carbon grid built into the light-weight geopolymer structure. According to the study, the most suitable materials to be used as fillers are polystyrenes, along with hollow ceramic microsphere and Liapor. The polystyrene geopolymer (GPP) achieves five times lower thermal conductivity compared to cement concretes, which means five times lower heat loss by conduction. Furthermore, GPP is 28% lighter than the standard geopolymer composite. Although the achieved flexural strength of GPP is high enough, the compressive strength of GPP is only 12 MPa. This can be seen as a compromise of using polystyrene as a filler. At the same time, the results indicate that Liapor and hollow ceramic microsphere are also suitable fillers. They led to better mechanical strengths of geopolymer composites but also heavier and higher thermal conductivity compared to GPP. The results further show that the carbon grid not only enhances the mechanical performances of the geopolymer composites but also reduces the electromagnetic field. Carbon grids with grid sizes of 10 mm × 15 mm and 21 mm × 21 mm can reduce around 60% of the Wi-Fi emissions when 2 m away from the signal transmitter. Moreover, the Wi-Fi emission was blocked when the signal transmitter was at a distance of 6 m.
Zobrazit více v PubMed
McGrath T.E., Cox S., Soutsos M., Kong D., Mee L.P., Alengaram J.U. Life cycle assessment of geopolymer concrete: A Malaysian context. IOP Conf. Ser. Mater. Sci. Eng. 2018;431:092001. doi: 10.1088/1757-899X/431/9/092001. DOI
Korniejenko K., Łach M. Geopolymers reinforced by short and long fibres—Innovative materials for additive manufacturing. Curr. Opin. Chem. Eng. 2020;28:167–172. doi: 10.1016/j.coche.2020.06.005. DOI
Thang X.N., Louda P., Kroisová D. Thermophysical properties of woven fabrics reinforced geopolymer composites. World J. Eng. 2013;10:139–144. doi: 10.1260/1708-5284.10.2.139. DOI
Tran D.H., Kroisová D., Louda P., Bortnovsky O., Bezucha P. Effect of curing temperature on flexural properties of silica-based geopolymer-carbon reinforced composite. Manuf. Eng. 2009;37:492–497.
Blanco I., Poggetto G.D., Morrone B., Tranquillo E., Barrino F., Catauro M. Fly Ash Filled Geopolymers: Preparation and Thermal Study. Macromol. Symp. 2020;389:1900052. doi: 10.1002/masy.201900052. DOI
Levine H., Jørgensen N., Martino-Andrade A., Mendiola J., Weksler-Derri D., Mindlis I., Pinotti R., Swan S.H. Temporal trends in sperm count: A systematic review and meta-regression analysis. Hum. Reprod. Update. 2017;23:646–659. doi: 10.1093/humupd/dmx022. PubMed DOI PMC
Akdag M.Z., Dasdag S., Canturk F., Karabulut D., Caner Y., Adalier N. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J. Chem. Neuroanat. 2016;75:116–122. doi: 10.1016/j.jchemneu.2016.01.003. PubMed DOI
Pall M.L. Wi-Fi is an important threat to human health. Environ. Res. 2018;164:405–416. doi: 10.1016/j.envres.2018.01.035. PubMed DOI
Markovà E., Malmgren L.O.G., Belyaev I.Y. Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells More Strongly Than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk. Environ. Health Perspect. 2010;118:394–399. doi: 10.1289/ehp.0900781. PubMed DOI PMC
Lewczuk B., Redlarski G., Zak A., Ziółkowska N., Przybylska-Gornowicz B., Krawczuk M. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge. BioMed Res. Int. 2014;2014:169459. doi: 10.1155/2014/169459. PubMed DOI PMC
Fetahović I., Pejović M., Vujisić M. Radiation Damage in Electronic Memory Devices. Int. J. Photoenergy. 2013;2013:170269. doi: 10.1155/2013/170269. DOI
Tanaka H. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Volume 4812. Springer; Berlin/Heidelberg, Germany: 2007. Information Leakage Via Electromagnetic Emanations and Evaluation of Tempest Countermeasures; pp. 167–179. DOI
Russia Accused of Cyber-Attack on Chemical Weapons Watchdog | Russia | The Guardian. [(accessed on 20 August 2021)]. Available online: https://www.theguardian.com/world/2018/oct/04/netherlands-halted-russian-cyber-attack-on-chemical-weapons-body.
Wanasinghe D., Aslani F., Ma G. Electromagnetic shielding properties of carbon fibre reinforced cementitious composites. Constr. Build. Mater. 2020;260:120439. doi: 10.1016/j.conbuildmat.2020.120439. DOI
BAUCIS LK: ČLUZ a.s. [(accessed on 8 September 2021)]. Available online: https://www.cluz.cz/en/baucis-lk.
Panesar D.K. Developments in the Formulation and Reinforcement of Concrete. Woodhead Publishing; Sawston, UK: 2019. Supplementary cementing materials; pp. 55–85. DOI
Luna-Galiano Y., Leiva C., Arenas C., Fernández C.L. Fly ash based geopolymeric foams using silica fume as pore generation agent. Physical, mechanical and acoustic properties. J. Non-Cryst. Solids. 2018;500:196–204. doi: 10.1016/j.jnoncrysol.2018.07.069. DOI
Shahmansouri A.A., Yazdani M., Ghanbari S., Bengar H.A., Jafari A., Ghatte H.F. Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J. Clean. Prod. 2020;279:123697. doi: 10.1016/j.jclepro.2020.123697. DOI
Rill E., Lowry D.R., Kriven W.M. Properties of basalt fiber reinforced geopolymer composites. Ceram. Eng. Sci. Proc. 2010;31:57–67. doi: 10.1002/9780470944103.CH6. DOI
Korniejenko K., Mucsi G., Halyag N.P., Szabó R., Mierzwiński D., Louda P. Mechanical Properties of Basalt Fiber Reinforced Fly Ash-Based Geopolymer Composites. KnE Eng. Vol. 2020:86–100. doi: 10.18502/keg.v5i4.6800. DOI
ČSN EN 1015-11 (722400)—Zkušební Metody malt pro Zdivo-Část 11: Stanovení Pevnosti Zatvrdlých malt v tahu za ohybu a v tlaku-duben 2020—Technické normy—Ing. Jiří Hrazdil. [(accessed on 25 November 2021)]. Available online: https://shop.normy.biz/detail/509887.
2,250lbf (10 kN) Instron 4202 Testing Machine Frank Bacon. [(accessed on 22 November 2021)]. Available online: https://frankbacon.com/product/2-250lbf-10kn-instron-4202-testing-machine/
ČSN EN 1936 (721143) [(accessed on 25 November 2021)]. Available online: https://www.technicke-normy-csn.cz/csn-en-1936-721143-218488.html.
Cao V.D., Pilehvar S., Salas-Bringas C., Szczotok A.M., Bui T.Q., Carmona M., Rodriguez J.F., Kjøniksen A.-L. Thermal performance and numerical simulation of geopolymer concrete containing different types of thermoregulating materials for passive building applications. Energy Build. 2018;173:678–688. doi: 10.1016/j.enbuild.2018.06.011. DOI