Influence of Incorporating Recycled Windshield Glass, PVB-Foil, and Rubber Granulates on the Properties of Geopolymer Composites and Concretes

. 2023 Apr 29 ; 15 (9) : . [epub] 20230429

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37177268

Waste materials from the automotive industries were re-used as aggregates into metakaolin-based geopolymer (GP), geopolymer mortar (GM), and Bauhaus B20-based concrete composite (C). Specifically, the study evaluates the ability of windshield silica glass (W), PVB-Foils (P), and rubber granulates (G) to impact the mechanical and thermal properties. The addition of the recovered materials into the experimental geopolymers outperformed the commercially available B20. The flexural strength reached values of 7.37 ± 0.51 MPa in concrete with silica glass, 4.06 ± 0.32 in geopolymer malt with PVB-Foils, and 6.99 ± 0.82 MPa in pure geopolymer with rubber granulates; whereas the highest compressive strengths (бc) were obtained by the addition of PVB-Foils in pure geopolymer, geopolymer malt, and concrete (43.16 ± 0.31 MPa, 46.22 ± 2.06 MPa, and 27.24 ± 1.28 MPa, respectively). As well PVB-Foils were able to increase the impact strength (бi) at 5.15 ± 0.28 J/cm2 in pure geopolymer, 5.48 ± 0.41 J/cm2 in geopolymer malt, and 3.19 ± 0.14 J/cm2 in concrete, furnishing a significant improvement over the reference materials. Moreover, a correlation between density and thermal conductivity (λ) was also obtained to provide the suitability of these materials in applications such as insulation or energy storage. These findings serve as a basis for further research on the use of waste materials in the creation of new, environmentally friendly composites.

Zobrazit více v PubMed

Watts J. Concrete: The Most Destructive Material on Earth. Guardian. 2019;25:1–9.

Davidovits J. Geopolymers and Geopolymeric Materials. J. Therm. Anal. 1989;35:429–441. doi: 10.1007/BF01904446. DOI

Davidovits J. Global Warming Impact on the Cement and Aggregates Industries. World Resour. Rev. 1994;6:263–278.

Davidovits J. Proceedings of the World Congress Geopolymer 2005. Geopolymer Institute; Saint-Quentin, France: 2005. Geopolymer, Green Chemistry and Sustainable Development Solutions.

Le V.S., Szczypinski M.M., Hájková P., Kovacic V., Bakalova T., Volesky L., Hiep L.C., Louda P. Mechanical Properties of Geopolymer Foam at High Temperature. Sci. Eng. Compos. Mater. 2020;27:129–138. doi: 10.1515/secm-2020-0013. DOI

Le V.S., Hájková P., Kovačič V., Bakalova T., Voleský L., Le C.H., Seifert K.C., Peres A.P., Louda P. Thermal Conductivity of Reinforced Geopolymer Foams. Ceram.-Silikáty. 2019;63:365–373. doi: 10.13168/cs.2019.0032. DOI

García-Segura T., Yepes V., Alcalá J. Life Cycle Greenhouse Gas Emissions of Blended Cement Concrete Including Carbonation and Durability. Int. J. Life Cycle Assess. 2014;19:3–12. doi: 10.1007/s11367-013-0614-0. DOI

Davidovits J., Sawyer J.L. Early High-Strength Mineral Polymer 1985. US4509985A. US Patent. 1984 February 22;

Kearsley E.P., Wainwright P.J. The Effect of High Fly Ash Content on the Compressive Strength of Foamed Concrete. Cem. Concr. Res. 2001;31:105–112. doi: 10.1016/S0008-8846(00)00430-0. DOI

Davidovits J. Geopolymers: Inorganic Polymeric New Materials. J. Anal. Calorim. 1991;37:1633–1656. doi: 10.1007/BF01912193. DOI

Nguyen V.V., Le V.S., Louda P., Szczypiński M.M., Ercoli R., Růžek V., Łoś P., Prałat K., Plaskota P., Pacyniak T. Low-Density Geopolymer Composites for the Construction Industry. Polymer. 2022;14:304. doi: 10.3390/polym14020304. PubMed DOI PMC

Ercoli R., Laskowska D., Nguyen V.V., Le V.S., Louda P., Łoś P., Ciemnicka J., Prałat K., Renzulli A., Paris E. Mechanical and Thermal Properties of Geopolymer Foams (GFs) Doped with by-Products of the Secondary Aluminum Industry. Polymer. 2022;14:703. doi: 10.3390/polym14040703. PubMed DOI PMC

BAUCIS LK: ČLUZ. [(accessed on 5 March 2023)]. Available online: http://www.cluz.cz/en/baucis-lk.

Aygörmez Y. Evaluation of the Red Mud and Quartz Sand on Reinforced Metazeolite-Based Geopolymer Composites. J. Build. Eng. 2021;43:102528. doi: 10.1016/j.jobe.2021.102528. DOI

Şahin F., Uysal M., Canpolat O. Systematic Evaluation of the Aggregate Types and Properties on Metakaolin Based Geopolymer Composites. Constr. Build. Mater. 2021;278:122414. doi: 10.1016/j.conbuildmat.2021.122414. DOI

Kohout J., Koutník P. Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Materials. 2020;13:2395. doi: 10.3390/ma13102395. PubMed DOI PMC

European Parliament and of the Council . Directive 2008/98/EC of the European Parliament and of the Council. European Parliament; Strasbourg, France: 2008. pp. 3–30.

European Parliament . Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018. European Parliament; Strasbourg, France: 2018.

Pawlik T., Michalik D., Sopicka-Lizer M., Godzierz M. Manufacturing of Light Weight Aggregates from the Local Waste Materials for Application in the Building Concrete. Trans. Technol. Publ. 2017;904:174–178. doi: 10.4028/www.scientific.net/MSF.904.174. DOI

Rigotti D., Dorigato A. Novel Uses of Recycled Rubber in Civil Applications. Adv. Ind. Eng. Polym. Res. 2022;5:214–233. doi: 10.1016/j.aiepr.2022.08.005. DOI

Arabi N., Meftah H., Amara H., Kebaïli O., Berredjem L. Valorization of Recycled Materials in Development of Self-Compacting Concrete: Mixing Recycled Concrete Aggregates–Windshield Waste Glass Aggregates. Constr. Build. Mater. 2019;209:364–376. doi: 10.1016/j.conbuildmat.2019.03.024. DOI

Khouri S., Behun M., Knapcikova L., Behunova A., Sofranko M., Rosova A. Characterization of Customized Encapsulant Polyvinyl Butyral Used in the Solar Industry and Its Impact on the Environment. Energies. 2020;13:5391. doi: 10.3390/en13205391. DOI

Nuaklong P., Sata V., Chindaprasirt P. Influence of Recycled Aggregate on Fly Ash Geopolymer Concrete Properties. J. Clean. Prod. 2016;112:2300–2307. doi: 10.1016/j.jclepro.2015.10.109. DOI

Zhou W., Shi X., Lu X., Qi C., Luan B., Liu F. The Mechanical and Microstructural Properties of Refuse Mudstone-GGBS-Red Mud Based Geopolymer Composites Made with Sand. Constr. Build. Mater. 2020;253:119193. doi: 10.1016/j.conbuildmat.2020.119193. DOI

Nematollahi B., Ranade R., Sanjayan J., Ramakrishnan S. Thermal and Mechanical Properties of Sustainable Lightweight Strain Hardening Geopolymer Composites. Arch. Civ. Mech. Eng. 2017;17:55–64. doi: 10.1016/j.acme.2016.08.002. DOI

Zhang G., He J., Gambrell R.P. Synthesis, Characterization, and Mechanical Properties of Red Mud–Based Geopolymers. Transp. Res. Rec. 2010;2167:1–9. doi: 10.3141/2167-01. DOI

ČSN EN 1015-11 (722400)—Zkušební Metody Malt pro Zdivo—Část 11: Stanovení Pevnosti Zatvrdlých Malt v Tahu za Ohybu a v Tlaku–Duben 2020—Technické Normy—Ing. Jiří Hrazdil. [(accessed on 7 March 2023)]. Available online: https://shop.normy.biz/detail/509887.

Standard Test Method for Thermal Conductivity of Solids Using the Guarded-Comparative-Longitudinal Heat Flow Technique. [(accessed on 7 March 2023)]. Available online: https://www.astm.org/e1225-13.html.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...