Influence of Incorporating Recycled Windshield Glass, PVB-Foil, and Rubber Granulates on the Properties of Geopolymer Composites and Concretes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37177268
PubMed Central
PMC10181368
DOI
10.3390/polym15092122
PII: polym15092122
Knihovny.cz E-zdroje
- Klíčová slova
- PVB-Foils, concrete, geopolymer, rubber granulate, windshield glass,
- Publikační typ
- časopisecké články MeSH
Waste materials from the automotive industries were re-used as aggregates into metakaolin-based geopolymer (GP), geopolymer mortar (GM), and Bauhaus B20-based concrete composite (C). Specifically, the study evaluates the ability of windshield silica glass (W), PVB-Foils (P), and rubber granulates (G) to impact the mechanical and thermal properties. The addition of the recovered materials into the experimental geopolymers outperformed the commercially available B20. The flexural strength reached values of 7.37 ± 0.51 MPa in concrete with silica glass, 4.06 ± 0.32 in geopolymer malt with PVB-Foils, and 6.99 ± 0.82 MPa in pure geopolymer with rubber granulates; whereas the highest compressive strengths (бc) were obtained by the addition of PVB-Foils in pure geopolymer, geopolymer malt, and concrete (43.16 ± 0.31 MPa, 46.22 ± 2.06 MPa, and 27.24 ± 1.28 MPa, respectively). As well PVB-Foils were able to increase the impact strength (бi) at 5.15 ± 0.28 J/cm2 in pure geopolymer, 5.48 ± 0.41 J/cm2 in geopolymer malt, and 3.19 ± 0.14 J/cm2 in concrete, furnishing a significant improvement over the reference materials. Moreover, a correlation between density and thermal conductivity (λ) was also obtained to provide the suitability of these materials in applications such as insulation or energy storage. These findings serve as a basis for further research on the use of waste materials in the creation of new, environmentally friendly composites.
Department of Chemistry University of Pavia 27100 Pavia Italy
Department of Pure and Applied Science University of Urbino 61029 Urbino Italy
Faculty of Material Engineering and Physics Cracow University of Technology 31 864 Cracow Poland
Faculty of Mechanical Engineering Technical University of Liberec 461 17 Liberec Czech Republic
Zobrazit více v PubMed
Watts J. Concrete: The Most Destructive Material on Earth. Guardian. 2019;25:1–9.
Davidovits J. Geopolymers and Geopolymeric Materials. J. Therm. Anal. 1989;35:429–441. doi: 10.1007/BF01904446. DOI
Davidovits J. Global Warming Impact on the Cement and Aggregates Industries. World Resour. Rev. 1994;6:263–278.
Davidovits J. Proceedings of the World Congress Geopolymer 2005. Geopolymer Institute; Saint-Quentin, France: 2005. Geopolymer, Green Chemistry and Sustainable Development Solutions.
Le V.S., Szczypinski M.M., Hájková P., Kovacic V., Bakalova T., Volesky L., Hiep L.C., Louda P. Mechanical Properties of Geopolymer Foam at High Temperature. Sci. Eng. Compos. Mater. 2020;27:129–138. doi: 10.1515/secm-2020-0013. DOI
Le V.S., Hájková P., Kovačič V., Bakalova T., Voleský L., Le C.H., Seifert K.C., Peres A.P., Louda P. Thermal Conductivity of Reinforced Geopolymer Foams. Ceram.-Silikáty. 2019;63:365–373. doi: 10.13168/cs.2019.0032. DOI
García-Segura T., Yepes V., Alcalá J. Life Cycle Greenhouse Gas Emissions of Blended Cement Concrete Including Carbonation and Durability. Int. J. Life Cycle Assess. 2014;19:3–12. doi: 10.1007/s11367-013-0614-0. DOI
Davidovits J., Sawyer J.L. Early High-Strength Mineral Polymer 1985. US4509985A. US Patent. 1984 February 22;
Kearsley E.P., Wainwright P.J. The Effect of High Fly Ash Content on the Compressive Strength of Foamed Concrete. Cem. Concr. Res. 2001;31:105–112. doi: 10.1016/S0008-8846(00)00430-0. DOI
Davidovits J. Geopolymers: Inorganic Polymeric New Materials. J. Anal. Calorim. 1991;37:1633–1656. doi: 10.1007/BF01912193. DOI
Nguyen V.V., Le V.S., Louda P., Szczypiński M.M., Ercoli R., Růžek V., Łoś P., Prałat K., Plaskota P., Pacyniak T. Low-Density Geopolymer Composites for the Construction Industry. Polymer. 2022;14:304. doi: 10.3390/polym14020304. PubMed DOI PMC
Ercoli R., Laskowska D., Nguyen V.V., Le V.S., Louda P., Łoś P., Ciemnicka J., Prałat K., Renzulli A., Paris E. Mechanical and Thermal Properties of Geopolymer Foams (GFs) Doped with by-Products of the Secondary Aluminum Industry. Polymer. 2022;14:703. doi: 10.3390/polym14040703. PubMed DOI PMC
BAUCIS LK: ČLUZ. [(accessed on 5 March 2023)]. Available online: http://www.cluz.cz/en/baucis-lk.
Aygörmez Y. Evaluation of the Red Mud and Quartz Sand on Reinforced Metazeolite-Based Geopolymer Composites. J. Build. Eng. 2021;43:102528. doi: 10.1016/j.jobe.2021.102528. DOI
Şahin F., Uysal M., Canpolat O. Systematic Evaluation of the Aggregate Types and Properties on Metakaolin Based Geopolymer Composites. Constr. Build. Mater. 2021;278:122414. doi: 10.1016/j.conbuildmat.2021.122414. DOI
Kohout J., Koutník P. Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Materials. 2020;13:2395. doi: 10.3390/ma13102395. PubMed DOI PMC
European Parliament and of the Council . Directive 2008/98/EC of the European Parliament and of the Council. European Parliament; Strasbourg, France: 2008. pp. 3–30.
European Parliament . Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018. European Parliament; Strasbourg, France: 2018.
Pawlik T., Michalik D., Sopicka-Lizer M., Godzierz M. Manufacturing of Light Weight Aggregates from the Local Waste Materials for Application in the Building Concrete. Trans. Technol. Publ. 2017;904:174–178. doi: 10.4028/www.scientific.net/MSF.904.174. DOI
Rigotti D., Dorigato A. Novel Uses of Recycled Rubber in Civil Applications. Adv. Ind. Eng. Polym. Res. 2022;5:214–233. doi: 10.1016/j.aiepr.2022.08.005. DOI
Arabi N., Meftah H., Amara H., Kebaïli O., Berredjem L. Valorization of Recycled Materials in Development of Self-Compacting Concrete: Mixing Recycled Concrete Aggregates–Windshield Waste Glass Aggregates. Constr. Build. Mater. 2019;209:364–376. doi: 10.1016/j.conbuildmat.2019.03.024. DOI
Khouri S., Behun M., Knapcikova L., Behunova A., Sofranko M., Rosova A. Characterization of Customized Encapsulant Polyvinyl Butyral Used in the Solar Industry and Its Impact on the Environment. Energies. 2020;13:5391. doi: 10.3390/en13205391. DOI
Nuaklong P., Sata V., Chindaprasirt P. Influence of Recycled Aggregate on Fly Ash Geopolymer Concrete Properties. J. Clean. Prod. 2016;112:2300–2307. doi: 10.1016/j.jclepro.2015.10.109. DOI
Zhou W., Shi X., Lu X., Qi C., Luan B., Liu F. The Mechanical and Microstructural Properties of Refuse Mudstone-GGBS-Red Mud Based Geopolymer Composites Made with Sand. Constr. Build. Mater. 2020;253:119193. doi: 10.1016/j.conbuildmat.2020.119193. DOI
Nematollahi B., Ranade R., Sanjayan J., Ramakrishnan S. Thermal and Mechanical Properties of Sustainable Lightweight Strain Hardening Geopolymer Composites. Arch. Civ. Mech. Eng. 2017;17:55–64. doi: 10.1016/j.acme.2016.08.002. DOI
Zhang G., He J., Gambrell R.P. Synthesis, Characterization, and Mechanical Properties of Red Mud–Based Geopolymers. Transp. Res. Rec. 2010;2167:1–9. doi: 10.3141/2167-01. DOI
ČSN EN 1015-11 (722400)—Zkušební Metody Malt pro Zdivo—Část 11: Stanovení Pevnosti Zatvrdlých Malt v Tahu za Ohybu a v Tlaku–Duben 2020—Technické Normy—Ing. Jiří Hrazdil. [(accessed on 7 March 2023)]. Available online: https://shop.normy.biz/detail/509887.
Standard Test Method for Thermal Conductivity of Solids Using the Guarded-Comparative-Longitudinal Heat Flow Technique. [(accessed on 7 March 2023)]. Available online: https://www.astm.org/e1225-13.html.