Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites

. 2020 May 22 ; 13 (10) : . [epub] 20200522

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32455979

Grantová podpora
LO1606 Ministry of Education, Youth and Science
LM2015039 Ministry of Education, Youth and Science

Metakaolinite-based geopolymer binder was prepared at room temperature by mixing calcined claystone and potassium alkaline activator. Various granular inorganic fillers were added, amounting to 65 vol % to form geopolymer composites. The effect of four types of fillers (sand quartz, chamotte, cordierite, and corundum) on the thermo-mechanical properties of metakaolinite-based geopolymer composites were investigated. The samples were also examined by an X-ray diffraction method to determine their phase composition. The pore size distributions were determined by a mercury intrusion porosimeter. The XRD revealed the crystallization of new phase (leucite) after thermal exposure at 1000 °C and higher. Geopolymer binders had low mechanical properties (flexural strength 2.5 MPa and compressive strength 45 MPa) and poor thermo-mechanical properties (especially high shrinkage-total shrinkage 9%) compared to geopolymer composites (flexural strength up to 13.8 MPa, compressive strength up to 95 MPa and total shrinkage up to 1%). The addition of fillers reduced the shrinkage of geopolymers and improved their mechanical properties. The results have shown that the compressive strength tested in situ and after exposure to high temperature are in conflict. Geopolymer composites with the addition of chamotte had the best mechanical properties before and after thermal exposure (compressive strength up to 95 MPa). The average pore size diameters increased with the increasing temperature (from 10 nm to approx. 700 nm). The fillers addition decreased the pore volume (from 250 mm3/g to approx. 100 mm3/g).

Zobrazit více v PubMed

Lemougna P.N., Chinje Melo U.F., Delplancke M.-P., Rahier H. Influence of the activating solution composition on the stability and thermo-mechanical properties of inorganic polymers (geopolymers) from volcanic ash. Constr. Build. Mater. 2013;48:278–286. doi: 10.1016/j.conbuildmat.2013.06.089. DOI

Subaer, van Riessen A. Thermo-mechanical and microstructural characterisation of sodium-poly(sialate-siloxo) (Na-PSS) geopolymers. J. Mater. Sci. 2007;42:3117–3123. doi: 10.1007/s10853-006-0522-9. DOI

Davidovits J. Geopolymer: Chemistry and Applications. Institut Géopolymère; Saint-Quentin, France: 2008. p. 285.

Davidovits J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989;35:429–441. doi: 10.1007/BF01904446. DOI

Davidovits J. Properties of Geopolymer Cement; Proceedings of the First International Conference on Alkaline Cements and Concretes; Kiev, Ukraine. 11–14 October 1994; pp. 131–149.

Huiskes D.M.A., Keulen A., Yu Q.L., Brouwers H.J.H. Design and performance evaluation of ultra-lightweight geopolymer concrete. Mater. Des. 2016;89:516–526. doi: 10.1016/j.matdes.2015.09.167. DOI

Perera D.S., Aly Z., Vance E.R., Mizumo M. Immobilization of Pb in a Geopolymer Matrix. J. Am. Ceram. Soc. 2005;88:2586–2588. doi: 10.1111/j.1551-2916.2005.00438.x. DOI

Hanzlíček T., Steinerová M., Straka P., Perná I., Siegl P., Švarcová T. Reinforcement of the terracotta sculpture by geopolymer composite. Mater. Des. 2009;30:3229–3234. doi: 10.1016/j.matdes.2008.12.015. DOI

Zhang H.-Y., Kodur V., Cao L., Qi S.-L. Fiber Reinforced Geopolymers for Fire Resistance Applications. Procedia Eng. 2014;71:153–158. doi: 10.1016/j.proeng.2014.04.022. DOI

Zhang Z., Wang H. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing; Oxford, UK: 2015. 22-Alkali-activated cements for protective coating of OPC concrete; pp. 605–626.

Medri V., Fabbri S., Ruffini A., Dedecek J., Vaccari A. SiC-based refractory paints prepared with alkali aluminosilicate binders. J. Eur. Ceram. Soc. 2011;31:2155–2165. doi: 10.1016/j.jeurceramsoc.2011.05.006. DOI

Sazama P., Bortnovsky O., Dědeček J., Tvarůžková Z., Sobalík Z. Geopolymer based catalysts—New group of catalytic materials. Catal. Today. 2011;164:92–99. doi: 10.1016/j.cattod.2010.09.008. DOI

Alzeer M.I.M., MacKenzie K.J.D., Keyzers R.A. Porous aluminosilicate inorganic polymers (geopolymers): A new class of environmentally benign heterogeneous solid acid catalysts. Appl. Catal. A Gen. 2016;524:173–181. doi: 10.1016/j.apcata.2016.06.024. DOI

Li L., Wang S., Zhu Z. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution. J. Colloid Interface Sci. 2006;300:52–59. doi: 10.1016/j.jcis.2006.03.062. PubMed DOI

Xia M., Sanjayan J. Method of formulating geopolymer for 3D printing for construction applications. Mater. Des. 2016;110:382–390. doi: 10.1016/j.matdes.2016.07.136. DOI

Kuenzel C., Li L., Vandeperre L., Boccaccini A.R., Cheeseman C.R. Influence of sand on the mechanical properties of metakaolin geopolymers. Constr. Build. Mater. 2014;66:442–446. doi: 10.1016/j.conbuildmat.2014.05.058. DOI

Koutník P., Soukup A., Bezucha P., Šafář J., Kohout J. Low viscosity metakaolinite based geopolymer binders. Constr. Build. Mater. 2020;230:116978. doi: 10.1016/j.conbuildmat.2019.116978. DOI

Hájková P. Kaolinite Claystone-Based Geopolymer Materials: Effect of Chemical Composition and Curing Conditions. Minerals. 2018;8:444. doi: 10.3390/min8100444. DOI

Koutnik P. Comparison of Kaolin and Kaolinitic Claystones as Raw Materials for Preparing Meta-Kaolinite-Based Geopolymers. Ceram.-Silik. 2019;63:110–123. doi: 10.13168/cs.2019.0003. DOI

Buchwald A., Vicent M., Kriegel R., Kaps C., Monzó M., Barba A. Geopolymeric binders with different fine fillers—Phase transformations at high temperatures. Appl. Clay Sci. 2009;46:190–195. doi: 10.1016/j.clay.2009.08.002. DOI

Lemougna P.N., MacKenzie K.J.D., Melo U.F.C. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int. 2011;37:3011–3018. doi: 10.1016/j.ceramint.2011.05.002. DOI

Saxena S.K., Kumar M., Singh N.B. Fire Resistant Properties of Alumino Silicate Geopolymer cement Mortars. Mater. Today Proc. 2017;4:5605–5612. doi: 10.1016/j.matpr.2017.06.018. DOI

Trindade A.C.C., Silva F.D.A., Alcamand H.A., Borges P.H.R. On The Mechanical Behavior of Metakaolin Based Geopolymers Under Elevated Temperatures. Mater. Res. 2017;20(Suppl. 2):265–272. doi: 10.1590/1980-5373-mr-2017-0101. DOI

Da Silva Rocha T., Dias D.P., França F.C.C., de Salles Guerra R.R., de Oliveira L.R.D.C. Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+) Constr. Build. Mater. 2018;178:453–461. doi: 10.1016/j.conbuildmat.2018.05.172. DOI

Rovnaník P. Effect of the aggregate type on the properties of alkali-activated slag subjected to high temperatures. Mater. Tehnol. 2015;49:709–713. doi: 10.17222/mit.2014.116. DOI

Barbosa V.F.F., MacKenzie K.J.D. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 2003;38:319–331. doi: 10.1016/S0025-5408(02)01022-X. DOI

Kamseu E., Rizzuti A., Leonelli C., Perera D. Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition. J. Mater. Sci. 2010;45:1715–1724. doi: 10.1007/s10853-009-4108-1. DOI

Yaşın S., Ahlatcı H. Thermal investigation of fine alumina powder reinforced Na-metakaolin-based geopolymer binder for refractory applications. J. Aust. Ceram. Soc. 2018;55:587–593. doi: 10.1007/s41779-018-0266-4. DOI

Kovářík T., Rieger D., Kadlec J., Křenek T., Kullová L., Pola M., Bělský P., Franče P., Říha J. Thermomechanical properties of particle-reinforced geopolymer composite with various aggregate gradation of fine ceramic filler. Constr. Build. Mater. 2017;143:599–606. doi: 10.1016/j.conbuildmat.2017.03.134. DOI

Hemra K., Aungkavattana P. Effect of cordierite addition on compressive strength and thermal stability of metakaolin based geopolymer. Adv. Powder Technol. 2016;27:1021–1026. doi: 10.1016/j.apt.2016.04.019. DOI

Medri V., Papa E., Mazzocchi M., Laghi L., Morganti M., Francisconi J., Landi E. Production and characterization of lightweight vermiculite/geopolymer-based panels. Mater. Des. 2015;85:266–274. doi: 10.1016/j.matdes.2015.06.145. DOI

He P., Jia D., Lin T., Wang M., Zhou Y. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram. Int. 2010;36:1447–1453. doi: 10.1016/j.ceramint.2010.02.012. DOI

He P., Jia D., Wang M., Zhou Y. Improvement of high-temperature mechanical properties of heat treated Cf/geopolymer composites by Sol-SiO2 impregnation. J. Eur. Ceram. Soc. 2010;30:3053–3061. doi: 10.1016/j.jeurceramsoc.2010.07.031. DOI

Barbosa V.F.F., MacKenzie K.J.D. Synthesis and thermal behaviour of potassium sialate geopolymers. Mater. Lett. 2003;57:1477–1482. doi: 10.1016/S0167-577X(02)01009-1. DOI

Škvára F., Pavlasová S., Kopecky L., Myskova L., Alberovská L. High Temperature Properties of Fly Ash-Based Geopolymers. Czech Republic University; Prague, Czech Republic: 2008. pp. 741–750.

Martin A., Pastor J.Y., Palomo A., Fernández Jiménez A. Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers) Constr. Build. Mater. 2015;93:1188–1196. doi: 10.1016/j.conbuildmat.2015.04.044. DOI

Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010;24:1176–1183. doi: 10.1016/j.conbuildmat.2009.12.023. DOI

Lin T.S., Jia D.C., He P.G., Wang M.R. Thermo-mechanical and Microstructural Characterization of Geopolymers with α-Al2O3 Particle Filler. Int. J. Thermophys. 2009;30:1568–1577. doi: 10.1007/s10765-009-0636-9. DOI

Duxson P., Lukey G.C., van Deventer J.S.J. Thermal evolution of metakaolin geopolymers: Part 1–Physical evolution. J. Non-Cryst. Solids. 2006;352:5541–5555. doi: 10.1016/j.jnoncrysol.2006.09.019. DOI

Bell J.L., Driemeyer P.E., Kriven W.M. Formation of Ceramics from Metakaolin-Based Geopolymers. Part II: K-Based Geopolymer. J. Am. Ceram. Soc. 2009;92:607–615. doi: 10.1111/j.1551-2916.2008.02922.x. DOI

Duxson P., Lukey G.C., van Deventer J.S.J. The thermal evolution of metakaolin geopolymers: Part 2–Phase stability and structural development. J. Non-Cryst. Solids. 2007;353:2186–2200. doi: 10.1016/j.jnoncrysol.2007.02.050. DOI

Kuenzel C., Vandeperre L.J., Donatello S., Boccaccini A.R., Cheeseman C., Brown P. Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers. J. Am. Ceram. Soc. 2012;95:3270–3277. doi: 10.1111/j.1551-2916.2012.05380.x. DOI

Westman A.E.R. The Thermal Expansion of Fireclay Bricks. Volume 26 University of Illinois at Urbana Champaign; Champaign, IL, USA: 1928.

Kuscer D., Bantan I., Hrovat M., Malič B. The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes. J. Eur. Ceram. Soc. 2017;37:739–746. doi: 10.1016/j.jeurceramsoc.2016.08.032. DOI

Fiquet G.R.P., Montagnac G. High-temperature Thermal Expansion of lime, periclase, corundum and spinel. Phys. Chem. Miner. 1999;27:103–111. doi: 10.1007/s002690050246. DOI

Kosinski J.A., Gualtieri J.G., Ballato A. Thermal Expansion of Alpha Quartz; Proceedings of the Forty-Fifth Annual Symposium on Frequency Control; Los Angeles, CA, USA. 29–31 May 1991.

Rovnanik P., Safrankova K. Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Materials (Basel) 2016;9:535. doi: 10.3390/ma9070535. PubMed DOI PMC

Zobina L.D., Semchenko G.D., Belik Y.G. Increasing the Service Temperature of Cordierite-based Materials. Refractories. 1982;23:446–449. doi: 10.1007/BF01386565. DOI

ASTM C71-12 . Standard Terminology Relating to Refractories. ASTM International; West Conshohocken, PA, USA: 2018.

Fayyad S.M., Al-Marahleh G.S., Abu-Ein S.Q. Improvement of the Refractoriness under Load of Fire-Clay Refractory Bricks. Adv. Theor. Appl. Mech. 2012;5:161–172.

Musil S.S., Kriven W.M., Biernacki J. In Situ Mechanical Properties of Chamotte Particulate Reinforced, Potassium Geopolymer. J. Am. Ceram. Soc. 2014;97:907–915. doi: 10.1111/jace.12736. DOI

Kong D.L.Y., Sanjayan J.G., Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 2007;37:1583–1589. doi: 10.1016/j.cemconres.2007.08.021. DOI

Sabbatini A., Vidal L., Pettinari C., Sobrados I., Rossignol S. Control of shaping and thermal resistance of metakaolin-based geopolymers. Mater. Des. 2017;116:374–385. doi: 10.1016/j.matdes.2016.12.039. DOI

Lahoti M., Wong K.K., Yang E.-H., Tan K.H. Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceram. Int. 2018;44:5726–5734. doi: 10.1016/j.ceramint.2017.12.226. DOI

Elimbi A., Tchakoute H.K., Kondoh M., Dika Manga J. Thermal behavior and characteristics of fired geopolymers produced from local Cameroonian metakaolin. Ceram. Int. 2014;40:4515–4520. doi: 10.1016/j.ceramint.2013.08.126. DOI

Zhang H.Y., Kodur V., Qi S.L., Cao L., Wu B. Development of metakaolin–fly ash based geopolymers for fire resistance applications. Constr. Build. Mater. 2014;55:38–45. doi: 10.1016/j.conbuildmat.2014.01.040. DOI

Sarkar M., Dana K., Das S. Microstructural and phase evolution in metakaolin geopolymers with different activators and added aluminosilicate fillers. J. Mol. Struct. 2015;1098:110–118. doi: 10.1016/j.molstruc.2015.05.046. DOI

Duxson P., Mallicoat S.W., Lukey G.C., Kriven W.M., van Deventer J.S.J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007;292:8–20. doi: 10.1016/j.colsurfa.2006.05.044. DOI

Yan D., Chen S., Zeng Q., Xu S., Li H. Correlating the elastic properties of metakaolin-based geopolymer with its composition. Mater. Des. 2016;95:306–318. doi: 10.1016/j.matdes.2016.01.107. DOI

Pelisser F., Guerrino E.L., Menger M., Michel M.D., Labrincha J.A. Micromechanical characterization of metakaolin-based geopolymers. Constr. Build. Mater. 2013;49:547–553. doi: 10.1016/j.conbuildmat.2013.08.081. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...