Effect of Boric Acid Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1606
Ministry of Education, Youth and Science
LM2015039
Ministry of Education, Youth and Science
PubMed
33261181
PubMed Central
PMC7731149
DOI
10.3390/ma13235409
PII: ma13235409
Knihovny.cz E-zdroje
- Klíčová slova
- carbon fiber, composite, prepreg, short-beam, temperature resistant, tensile strength,
- Publikační typ
- časopisecké články MeSH
This work presents carbon fabric reinforced aluminosilicate matrix composites with content of boric acid, where boron replaces aluminum ions in the matrix and can increase the mechanical properties of composites. Five different amounts of boric acid were added to the alkaline activator for preparing six types (including alkaline activator without boric acid) of composites by the prepreg method. The influence of boric acid content in the matrix on the tensile strength, Young's modulus and interlaminar strength of composites was studied. Attention was also paid to the influence of boron content on the behavior of the matrix and on the internal structure of composites, which was monitored using a scanning electron microscope. The advantage of the aluminosilicate matrix is its resistance to high temperatures; therefore, tests were also performed on samples affected by temperatures of 400-800 °C. The interlaminar strength obtained by short-beam test were measured on samples exposed to 500 °C either hot (i.e. measured at 500 °C) or cooled down to room temperature. The results showed that the addition of boron to the aluminosilicate matrix of the prepared composites did not have any significant effect on their mechanical properties. The presence of boron affected the brittleness and swelling of the matrix and the differences in mechanical properties were evident in samples exposed to temperatures above 500 °C. All six prepared composites showed tensile strength higher than 320 MPa at laboratory temperature. The boron-free composite had the highest strength 385 MPa. All samples showed a tensile strength higher than 230 MPa at elevated temperatures up to 500 °C.
Zobrazit více v PubMed
Davidovits J. Geopolymers and geopolymeric materials. J. Them. Anal. Calorim. 1989;35:429–441. doi: 10.1007/BF01904446. DOI
Barbosa V.F., MacKenzie K.J., Thaumaturgo C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. Int. J. Inorg. Mater. 2000;2:309–317. doi: 10.1016/S1466-6049(00)00041-6. DOI
Duxson P., Provis J.L., Lukey G.C., Van Deventer J.S.J. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007;37:1590–1597. doi: 10.1016/j.cemconres.2007.08.018. DOI
Duxson P., Mallicoat S., Lukey G., Kriven W., Van Deventer J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A: Physicochem. Eng. Asp. 2007;292:8–20. doi: 10.1016/j.colsurfa.2006.05.044. DOI
Kuenzel C., Neville T., Donatello S., Vandeperre L., Boccaccini A., Cheeseman C. Influence of metakaolin characteristics on the mechanical properties of geopolymers. Appl. Clay Sci. 2013;83:308–314. doi: 10.1016/j.clay.2013.08.023. DOI
Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., Van Deventer J.S. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A: Physicochem. Eng. Asp. 2005;269:47–58. doi: 10.1016/j.colsurfa.2005.06.060. DOI
Zhang H.-Y., Kodur V., Cao L., Qi S.-L. Fiber Reinforced Geopolymers for Fire Resistance Applications. Procedia Eng. 2014;71:153–158. doi: 10.1016/j.proeng.2014.04.022. DOI
Kohout J., Koutník P. Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Materials. 2020;13:2395. doi: 10.3390/ma13102395. PubMed DOI PMC
Kuenzel C., Li L., Vandeperre L., Boccaccini A.R., Cheeseman C. Influence of sand on the mechanical properties of metakaolin geopolymers. Constr. Build. Mater. 2014;66:442–446. doi: 10.1016/j.conbuildmat.2014.05.058. DOI
He P., Jia D., Lin T., Wang M., Zhou Y. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram. Int. 2010;36:1447–1453. doi: 10.1016/j.ceramint.2010.02.012. DOI
Krystek J., Laš V., Pompe V., Hájková P. Tensile and bending test of carbon/epoxy and carbon/geopolymer composites after temperature conditioning; Proceedings of the MATEC Web of Conferences; Auckland, New Zealand. 4–8 February 2018; DOI
Hung T.D., Louda P., Kroisova D., Bortnovsky O., Xiem N.T. New Generation of Geopolymer Composite for Fire-Resistance. Intech Open; London, UK: 2011.
Dupuy C., Gharzouni A., Sobrados I., Texier-Mandoki N., Bourbon X., Rossignol S. 29Si, 27Al, 31P and 11B magic angle spinning nuclear magnetic resonance study of the structural evolutions induced by the use of phosphor- and boron–based additives in geopolymer mixtures. J. Non-Cryst. Solids. 2019;521:119541. doi: 10.1016/j.jnoncrysol.2019.119541. DOI
Bagheri A., Nazari A., Sanjayan J.G. Fibre-reinforced boroaluminosilicate geopolymers: A comparative study. Ceram. Int. 2018;44:16599–16605. doi: 10.1016/j.ceramint.2018.06.085. DOI
Bagheri A., Nazari A., Sanjayan J.G., Rajeev P. Alkali activated materials vs geopolymers: Role of boron as an eco-friendly replacement. Constr. Build. Mater. 2017;146:297–302. doi: 10.1016/j.conbuildmat.2017.04.137. DOI
Dupuy C., Havette J., Gharzouni A., Texier-Mandoki N., Bourbon X., Rossignol S. Metakaolin-based geopolymer: Formation of new phases influencing the setting time with the use of additives. Constr. Build. Mater. 2019;200:272–281. doi: 10.1016/j.conbuildmat.2018.12.114. DOI
Madani H., Ramezanianpour A., Shahbazinia M., Ahmadi E. Geopolymer bricks made from less active waste materials. Constr. Build. Mater. 2020;247:118441. doi: 10.1016/j.conbuildmat.2020.118441. DOI
Singh N., Middendorf B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020;237:117455. doi: 10.1016/j.conbuildmat.2019.117455. DOI
Lancellotti I., Catauro M., Ponzoni C., Bollino F., Leonelli C. Inorganic polymers from alkali activation of metakaolin: Effect of setting and curing on structure. J. Solid State Chem. 2013;200:341–348. doi: 10.1016/j.jssc.2013.02.003. DOI
Zhang J., Provis J.L., Feng D., Van Deventer J.S. Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+ J. Hazard. Mater. 2008;157:587–598. doi: 10.1016/j.jhazmat.2008.01.053. PubMed DOI
Davidovits J. Geopolymers. J. Therm. Anal. Calorim. 1991;37:1633–1656. doi: 10.1007/BF01912193. DOI
Lyon R.E., Balaguru P.N., Foden A., Sorathia U., Davidovits J., Davidovics M. Fire-resistant aluminosilicate composites. Fire Mater. 1997;21:67–73. doi: 10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N. DOI
Hájková P. Kaolinite Claystone-Based Geopolymer Materials: Effect of Chemical Composition and Curing Conditions. Minerals. 2018;8:444. doi: 10.3390/min8100444. DOI
Kohout J., Koutník P., Bezucha P., Kwoczynski Z. Leachability of the metakaolinite-rich materials in different alkaline solutions. Mater. Today Commun. 2019;21:100669. doi: 10.1016/j.mtcomm.2019.100669. DOI
Koutník P., Soukup A., Bezucha P., Šafář J., Hájková P., Čmelík J. Comparison of Kaolin and Kaolinitic Claystones as Raw Materials for Preparing Meta-Kaolinite-Based Geopolymers. Ceram.—Silik. 2019;63:110–123. doi: 10.13168/cs.2019.0003. DOI
Haincová E., Hájková P., Kohout J. Prepregs for Temperature Resistant Composites. Materials. 2019;12:4012. doi: 10.3390/ma12234012. PubMed DOI PMC
Prud’Homme E., Michaud P., Joussein E., Peyratout C., Smith A., Arrii-Clacens S., Clacens J.-M., Rossignol S. Silica fume as porogent agent in geo-materials at low temperature. J. Eur. Ceram. Soc. 2010;30:1641–1648. doi: 10.1016/j.jeurceramsoc.2010.01.014. DOI
Škvára F., Šulc R., Tišler Z., Skřičík P., Šmilauer V., Zlámalová Cílová Z. Preparation and properties of fly ash-based geopolymer foams. Ceram.—Silik. 2014;58:188–197.
Henon J., Alzina A., Absi J., Smith D.S., Rossignol S. Porosity control of cold consolidated geomaterial foam: Temperature effect. Ceram. Int. 2012;38:77–84. doi: 10.1016/j.ceramint.2011.06.040. DOI