Effect of Aluminosilicates' Particle Size Distribution on the Microstructural and Mechanical Properties of Metakaolinite-Based Geopolymers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018119
Ministry of Education, Youth and Sports
PubMed
37512282
PubMed Central
PMC10381852
DOI
10.3390/ma16145008
PII: ma16145008
Knihovny.cz E-zdroje
- Klíčová slova
- characteristics, claystone, geopolymer, mechanical properties, metakaolin, metakaolinite, particle size,
- Publikační typ
- časopisecké články MeSH
The present study focused on investigating the differences in properties between calcined and milled aluminosilicates with different particle size distributions. Two types of clay, i.e., kaolin and kaolinitic claystone, were subjected to calcination at 750 °C, and subsequent milling to obtain different fractions with distinct particle size distributions. These fractions were then combined with a potassium alkaline activator and quartz sand in a 50:50 weight ratio to form a geopolymer composite. The geopolymer binders were then characterized using a mercury intrusion porosimeter (MIP), scanning electron microscopy (SEM), and a rotary rheometer. Mechanical tests were conducted on the geopolymer composites prepared from aluminosilicates with varying particle size distributions. The findings indicated that aluminosilicates with a finer particle size distribution exhibited higher levels of dissolved aluminum (10,000 mg/kg) compared to samples with coarser particle size distributions (1000 mg/kg). Additionally, as the particle size distribution decreased, the dynamic viscosity of the geopolymer binders increased, while the average pore size decreased. Finally, the mechanical properties of the geopolymer composites derived from both tested aluminosilicates demonstrated a decline in performance as the mean particle size increased beyond 10 µm.
Zobrazit více v PubMed
Davidovits J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989;35:429–441. doi: 10.1007/BF01904446. DOI
Davidovits J. Geopolymer: Chemistry and Applications. Institut Géopolymère; Saint-Quentin, France: 2008. p. 285.
Duxson P., Fernández-Jiménez A., Provis J.L., Lukey G.C., Palomo A., van Deventer J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007;42:2917–2933. doi: 10.1007/s10853-006-0637-z. DOI
Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., van Deventer J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005;269:47–58. doi: 10.1016/j.colsurfa.2005.06.060. DOI
Provis J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. 2013;47:11–25. doi: 10.1617/s11527-013-0211-5. DOI
Rożek P., Król M., Mozgawa W. Geopolymer-zeolite composites: A review. J. Clean. Prod. 2019;230:557–579. doi: 10.1016/j.jclepro.2019.05.152. DOI
Huiskes D.M.A., Keulen A., Yu Q.L., Brouwers H.J.H. Design and performance evaluation of ultra-lightweight geopolymer concrete. Mater. Des. 2016;89:516–526. doi: 10.1016/j.matdes.2015.09.167. DOI
Aliabdo A.A., Abd Elmoaty A.E.M., Salem H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016;121:694–703. doi: 10.1016/j.conbuildmat.2016.06.062. DOI
Hanzlíček T., Steinerová M., Straka P., Perná I., Siegl P., Švarcová T. Reinforcement of the terracotta sculpture by geopolymer composite. Mater. Des. 2009;30:3229–3234. doi: 10.1016/j.matdes.2008.12.015. DOI
Zhang B., Yu T., Deng L., Li Y., Guo H., Zhou J., Li L., Peng Y. Ion-adsorption type rare earth tailings for preparation of alkali-based geopolymer with capacity for heavy metals immobilization. Cem. Concr. Compos. 2022;134:104768. doi: 10.1016/j.cemconcomp.2022.104768. DOI
Zhang J., Gao Y., Li Z., Wang C. Pb2+ and Cr3+ immobilization efficiency and mechanism in red-mud-based geopolymer grouts. Chemosphere. 2023;321:138129. doi: 10.1016/j.chemosphere.2023.138129. PubMed DOI
Supamathanon N., Boonserm K., Lisnund S., Chanlek N., Rungtaweevoranit B., Khemthong P., Wittayakun J., Osakoo N. Development of CaO supported on modified geopolymer catalyst for transesterification of soybean oil to biodiesel. Mater. Today Commun. 2021;29:102822. doi: 10.1016/j.mtcomm.2021.102822. DOI
Zhang R., Zhang Y., Liu T., Wan Q., Zheng D. Immobilization of vanadium and nickel in spent fluid catalytic cracking (SFCC) catalysts-based geopolymer. J. Clean. Prod. 2022;332:130112. doi: 10.1016/j.jclepro.2021.130112. DOI
Li P., Yang T., Ma P., Fei X., Li F., Ye J., Zhuang P. Luminous and bonding performance of self-luminescent cementitious coatings based on white cement and geopolymer. Constr. Build. Mater. 2023;362:129814. doi: 10.1016/j.conbuildmat.2022.129814. DOI
Yang N., Das C.S., Xue X., Li W., Dai J.-G. Geopolymer coating modified with reduced graphene oxide for improving steel corrosion resistance. Constr. Build. Mater. 2022;342:127942. doi: 10.1016/j.conbuildmat.2022.127942. DOI
Pasupathy K., Ramakrishnan S., Sanjayan J. 3D concrete printing of eco-friendly geopolymer containing brick waste. Cem. Concr. Compos. 2023;138:104943. doi: 10.1016/j.cemconcomp.2023.104943. DOI
Zhong H., Zhang M. 3D printing geopolymers: A review. Cem. Concr. Compos. 2022;128:104455. doi: 10.1016/j.cemconcomp.2022.104455. DOI
Haincova E., Hajkova P., Kohout J. Prepregs for Temperature Resistant Composites. Materials. 2019;12:4012. doi: 10.3390/ma12234012. PubMed DOI PMC
Haincova E., Hajkova P. Effect of Boric Acid Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites. Materials. 2020;13:5409. doi: 10.3390/ma13235409. PubMed DOI PMC
Kohoutova E., Hajkova P., Kohout J., Soukup A. Effect of Potassium Phosphate Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites. Materials. 2021;15:61. doi: 10.3390/ma15010061. PubMed DOI PMC
Kohout J., Koutník P., Bezucha P., Kwoczynski Z. Leachability of the metakaolinite-rich materials in different alkaline solutions. Mater. Today Commun. 2019;21:100669. doi: 10.1016/j.mtcomm.2019.100669. DOI
Cyr M., Idir R., Poinot T. Properties of inorganic polymer (geopolymer) mortars made of glass cullet. J. Mater. Sci. 2011;47:2782–2797. doi: 10.1007/s10853-011-6107-2. DOI
Gonçalves D.K.C., Lana S.L.B., Sales R.B.C., Aguilar M.T.P. Study of metakaolins with different amorphities and particle sizes activated by KOH and K2SiO3. Case Stud. Constr. Mater. 2022;16:e00778. doi: 10.1016/j.cscm.2021.e00778. DOI
Van Jaarsveld J.G.S., Van Deventer J.S.J. Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers. Ind. Eng. Chem. Res. 1999;38:3932–3941. doi: 10.1021/ie980804b. DOI
Xu H., van Deventer J.S.J. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloids Surf. A Physicochem. Eng. Asp. 2003;216:27–44. doi: 10.1016/S0927-7757(02)00499-5. DOI
da Silva Rocha T., Dias D.P., França F.C., de Salles Guerra R.R., de Oliveira Marques L.R.d.C. Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+) Constr. Build. Mater. 2018;178:453–461. doi: 10.1016/j.conbuildmat.2018.05.172. DOI
Assi L.N., Deaver E.E., Ziehl P. Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete. Constr. Build. Mater. 2018;167:372–380. doi: 10.1016/j.conbuildmat.2018.01.193. DOI
Xiong L., Wan Z., Zhang Y., Wang F., Wang J., Kang Y. Fly Ash Particle Size Effect on Pore Structure and Strength of Fly Ash Foamed Geopolymer. Adv. Polym. Technol. 2019;2019:1098027. doi: 10.1155/2019/1098027. DOI
Lemougna P.N., Chinje Melo U.F., Delplancke M.-P., Rahier H. Influence of the activating solution composition on the stability and thermo-mechanical properties of inorganic polymers (geopolymers) from volcanic ash. Constr. Build. Mater. 2013;48:278–286. doi: 10.1016/j.conbuildmat.2013.06.089. DOI
Lemougna P.N., MacKenzie K.J.D., Melo U.F.C. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int. 2011;37:3011–3018. doi: 10.1016/j.ceramint.2011.05.002. DOI
Cheng T.W., Chiu J.P. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 2003;16:205–210. doi: 10.1016/S0892-6875(03)00008-6. DOI
Rieger D., Kovářík T., Říha J., Medlín R., Novotný P., Bělský P., Kadlec J., Holba P. Effect of thermal treatment on reactivity and mechanical properties of alkali activated shale–slag binder. Constr. Build. Mater. 2015;83:26–33. doi: 10.1016/j.conbuildmat.2015.02.024. DOI
Payá J., Monzó J., Borrachero M.V., Tashima M.M. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing; Oxford, UK: 2015. 18—Reuse of aluminosilicate industrial waste materials in the production of alkali-activated concrete binders; pp. 487–518.
Thang N.H., Nhung L.T., Quyen P.V.T.H., Phong D.T., Khe D.T., Van Phuc N. Development of heat resistant geopolymer-based materials from red mud and rice husk ash. AIP Conf. Proc. 2018;1954:040005. doi: 10.1063/1.5033405. DOI
Hwang C.-L., Huynh T.-P. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr. Build. Mater. 2015;101:1–9. doi: 10.1016/j.conbuildmat.2015.10.025. DOI
Kohout J., Koutnik P., Hajkova P., Kohoutova E., Soukup A. Effect of K/Al Molar Ratio on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Polymers. 2021;13:3754. doi: 10.3390/polym13213754. PubMed DOI PMC
Lapeyre J., Ma H., Kumar A. Effect of particle size distribution of metakaolin on hydration kinetics of tricalcium silicate. J. Am. Ceram. Soc. 2019;102:5976–5988. doi: 10.1111/jace.16467. DOI
Rovnanik P., Safrankova K. Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Materials. 2016;9:535. doi: 10.3390/ma9070535. PubMed DOI PMC
Xu H., Van Deventer J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000;59:247–266. doi: 10.1016/S0301-7516(99)00074-5. DOI
Kuenzel C., Neville T.P., Donatello S., Vandeperre L., Boccaccini A.R., Cheeseman C.R. Influence of metakaolin characteristics on the mechanical properties of geopolymers. Appl. Clay Sci. 2013;83–84:308–314. doi: 10.1016/j.clay.2013.08.023. DOI
Kohout J., Koutnik P., Hajkova P., Kohoutova E., Soukup A. Effect of Different Types of Aluminosilicates on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Polymers. 2022;14:4838. doi: 10.3390/polym14224838. PubMed DOI PMC
Yao X., Zhang Z., Zhu H., Chen Y. Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry. Thermochim. Acta. 2009;493:49–54. doi: 10.1016/j.tca.2009.04.002. DOI
Duxson P., Mallicoat S.W., Lukey G.C., Kriven W.M., van Deventer J.S.J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007;292:8–20. doi: 10.1016/j.colsurfa.2006.05.044. DOI
Rowles M.R., O’Connor B.H. Chemical and Structural Microanalysis of Aluminosilicate Geopolymers Synthesized by Sodium Silicate Activation of Metakaolinite. J. Am. Ceram. Soc. 2009;92:2354–2361. doi: 10.1111/j.1551-2916.2009.03191.x. DOI
Yan D., Xie L., Qian X., Ruan S., Zeng Q. Compositional Dependence of Pore Structure, Strengthand Freezing-Thawing Resistance of Metakaolin-Based Geopolymers. Materials. 2020;13:2973. doi: 10.3390/ma13132973. PubMed DOI PMC
Xie J., Kayali O. Effect of initial water content and curing moisture conditions on the development of fly ash-based geopolymers in heat and ambient temperature. Constr. Build. Mater. 2014;67:20–28. doi: 10.1016/j.conbuildmat.2013.10.047. DOI
Koutník P., Soukup A., Bezucha P., Šafář J., Kohout J. Low viscosity metakaolinite based geopolymer binders. Constr. Build. Mater. 2020;230:116978. doi: 10.1016/j.conbuildmat.2019.116978. DOI
Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010;24:1176–1183. doi: 10.1016/j.conbuildmat.2009.12.023. DOI
Aredes F.G.M., Campos T.M.B., Machado J.P.B., Sakane K.K., Thim G.P., Brunelli D.D. Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceram. Int. 2015;41:7302–7311. doi: 10.1016/j.ceramint.2015.02.022. DOI
Nematollahi B., Sanjayan J., Shaikh F.U.A. Matrix design of strain hardening fiber reinforced engineered geopolymer composite. Compos. Part B Eng. 2016;89:253–265. doi: 10.1016/j.compositesb.2015.11.039. DOI
Zhang J., Li S., Li Z., Liu C., Gao Y. Feasibility study of red mud for geopolymer preparation: Effect of particle size fraction. J. Mater. Cycles Waste Manag. 2020;22:1328–1338. doi: 10.1007/s10163-020-01023-4. DOI
Li Z., Gao Y., Zhang J., Zhang C., Chen J., Liu C. Effect of particle size and thermal activation on the coal gangue based geopolymer. Mater. Chem. Phys. 2021;267:124657. doi: 10.1016/j.matchemphys.2021.124657. DOI
Sevim Ö., Demir İ. Optimization of fly ash particle size distribution for cementitious systems with high compactness. Constr. Build. Mater. 2019;195:104–114. doi: 10.1016/j.conbuildmat.2018.11.080. DOI
Escalera E., Antti M.L., Odén M. Thermal treatment and phase formation in kaolinite and illite based clays from tropical regions of Bolivia. IOP Conf. Ser. Mater. Sci. Eng. 2012;31:012017. doi: 10.1088/1757-899X/31/1/012017. DOI
Boháč M., Novotný R., Frajkorová F., Yadav R.S., Opravil T., Palou M. Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin. Int. J. Mater. Metall. Eng. 2015;9:301–305.
Koutnik P. Comparison of Kaolin and Kaolinitic Claystones as Raw Materials for Preparing Meta-Kaolinite-Based Geopolymers. J. Ceram.-Silik. 2019;63:110–123. doi: 10.13168/cs.2019.0003. DOI
Rees C.A., Provis J.L., Lukey G.C., van Deventer J.S.J. The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloids Surf. A Physicochem. Eng. Asp. 2008;318:97–105. doi: 10.1016/j.colsurfa.2007.12.019. DOI
Kuenzel C., Li L., Vandeperre L., Boccaccini A.R., Cheeseman C.R. Influence of sand on the mechanical properties of metakaolin geopolymers. Constr. Build. Mater. 2014;66:442–446. doi: 10.1016/j.conbuildmat.2014.05.058. DOI
Pelisser F., Guerrino E.L., Menger M., Michel M.D., Labrincha J.A. Micromechanical characterization of metakaolin-based geopolymers. Constr. Build. Mater. 2013;49:547–553. doi: 10.1016/j.conbuildmat.2013.08.081. DOI
Latella B.A., Perera D.S., Durce D., Mehrtens E.G., Davis J. Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al ≈ 2 and Na/Al ≈ 1. J. Mater. Sci. 2008;43:2693–2699. doi: 10.1007/s10853-007-2412-1. DOI