Effect of Aluminosilicates' Particle Size Distribution on the Microstructural and Mechanical Properties of Metakaolinite-Based Geopolymers

. 2023 Jul 14 ; 16 (14) : . [epub] 20230714

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37512282

Grantová podpora
LM2018119 Ministry of Education, Youth and Sports

The present study focused on investigating the differences in properties between calcined and milled aluminosilicates with different particle size distributions. Two types of clay, i.e., kaolin and kaolinitic claystone, were subjected to calcination at 750 °C, and subsequent milling to obtain different fractions with distinct particle size distributions. These fractions were then combined with a potassium alkaline activator and quartz sand in a 50:50 weight ratio to form a geopolymer composite. The geopolymer binders were then characterized using a mercury intrusion porosimeter (MIP), scanning electron microscopy (SEM), and a rotary rheometer. Mechanical tests were conducted on the geopolymer composites prepared from aluminosilicates with varying particle size distributions. The findings indicated that aluminosilicates with a finer particle size distribution exhibited higher levels of dissolved aluminum (10,000 mg/kg) compared to samples with coarser particle size distributions (1000 mg/kg). Additionally, as the particle size distribution decreased, the dynamic viscosity of the geopolymer binders increased, while the average pore size decreased. Finally, the mechanical properties of the geopolymer composites derived from both tested aluminosilicates demonstrated a decline in performance as the mean particle size increased beyond 10 µm.

Zobrazit více v PubMed

Davidovits J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989;35:429–441. doi: 10.1007/BF01904446. DOI

Davidovits J. Geopolymer: Chemistry and Applications. Institut Géopolymère; Saint-Quentin, France: 2008. p. 285.

Duxson P., Fernández-Jiménez A., Provis J.L., Lukey G.C., Palomo A., van Deventer J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007;42:2917–2933. doi: 10.1007/s10853-006-0637-z. DOI

Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., van Deventer J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005;269:47–58. doi: 10.1016/j.colsurfa.2005.06.060. DOI

Provis J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. 2013;47:11–25. doi: 10.1617/s11527-013-0211-5. DOI

Rożek P., Król M., Mozgawa W. Geopolymer-zeolite composites: A review. J. Clean. Prod. 2019;230:557–579. doi: 10.1016/j.jclepro.2019.05.152. DOI

Huiskes D.M.A., Keulen A., Yu Q.L., Brouwers H.J.H. Design and performance evaluation of ultra-lightweight geopolymer concrete. Mater. Des. 2016;89:516–526. doi: 10.1016/j.matdes.2015.09.167. DOI

Aliabdo A.A., Abd Elmoaty A.E.M., Salem H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016;121:694–703. doi: 10.1016/j.conbuildmat.2016.06.062. DOI

Hanzlíček T., Steinerová M., Straka P., Perná I., Siegl P., Švarcová T. Reinforcement of the terracotta sculpture by geopolymer composite. Mater. Des. 2009;30:3229–3234. doi: 10.1016/j.matdes.2008.12.015. DOI

Zhang B., Yu T., Deng L., Li Y., Guo H., Zhou J., Li L., Peng Y. Ion-adsorption type rare earth tailings for preparation of alkali-based geopolymer with capacity for heavy metals immobilization. Cem. Concr. Compos. 2022;134:104768. doi: 10.1016/j.cemconcomp.2022.104768. DOI

Zhang J., Gao Y., Li Z., Wang C. Pb2+ and Cr3+ immobilization efficiency and mechanism in red-mud-based geopolymer grouts. Chemosphere. 2023;321:138129. doi: 10.1016/j.chemosphere.2023.138129. PubMed DOI

Supamathanon N., Boonserm K., Lisnund S., Chanlek N., Rungtaweevoranit B., Khemthong P., Wittayakun J., Osakoo N. Development of CaO supported on modified geopolymer catalyst for transesterification of soybean oil to biodiesel. Mater. Today Commun. 2021;29:102822. doi: 10.1016/j.mtcomm.2021.102822. DOI

Zhang R., Zhang Y., Liu T., Wan Q., Zheng D. Immobilization of vanadium and nickel in spent fluid catalytic cracking (SFCC) catalysts-based geopolymer. J. Clean. Prod. 2022;332:130112. doi: 10.1016/j.jclepro.2021.130112. DOI

Li P., Yang T., Ma P., Fei X., Li F., Ye J., Zhuang P. Luminous and bonding performance of self-luminescent cementitious coatings based on white cement and geopolymer. Constr. Build. Mater. 2023;362:129814. doi: 10.1016/j.conbuildmat.2022.129814. DOI

Yang N., Das C.S., Xue X., Li W., Dai J.-G. Geopolymer coating modified with reduced graphene oxide for improving steel corrosion resistance. Constr. Build. Mater. 2022;342:127942. doi: 10.1016/j.conbuildmat.2022.127942. DOI

Pasupathy K., Ramakrishnan S., Sanjayan J. 3D concrete printing of eco-friendly geopolymer containing brick waste. Cem. Concr. Compos. 2023;138:104943. doi: 10.1016/j.cemconcomp.2023.104943. DOI

Zhong H., Zhang M. 3D printing geopolymers: A review. Cem. Concr. Compos. 2022;128:104455. doi: 10.1016/j.cemconcomp.2022.104455. DOI

Haincova E., Hajkova P., Kohout J. Prepregs for Temperature Resistant Composites. Materials. 2019;12:4012. doi: 10.3390/ma12234012. PubMed DOI PMC

Haincova E., Hajkova P. Effect of Boric Acid Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites. Materials. 2020;13:5409. doi: 10.3390/ma13235409. PubMed DOI PMC

Kohoutova E., Hajkova P., Kohout J., Soukup A. Effect of Potassium Phosphate Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites. Materials. 2021;15:61. doi: 10.3390/ma15010061. PubMed DOI PMC

Kohout J., Koutník P., Bezucha P., Kwoczynski Z. Leachability of the metakaolinite-rich materials in different alkaline solutions. Mater. Today Commun. 2019;21:100669. doi: 10.1016/j.mtcomm.2019.100669. DOI

Cyr M., Idir R., Poinot T. Properties of inorganic polymer (geopolymer) mortars made of glass cullet. J. Mater. Sci. 2011;47:2782–2797. doi: 10.1007/s10853-011-6107-2. DOI

Gonçalves D.K.C., Lana S.L.B., Sales R.B.C., Aguilar M.T.P. Study of metakaolins with different amorphities and particle sizes activated by KOH and K2SiO3. Case Stud. Constr. Mater. 2022;16:e00778. doi: 10.1016/j.cscm.2021.e00778. DOI

Van Jaarsveld J.G.S., Van Deventer J.S.J. Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers. Ind. Eng. Chem. Res. 1999;38:3932–3941. doi: 10.1021/ie980804b. DOI

Xu H., van Deventer J.S.J. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloids Surf. A Physicochem. Eng. Asp. 2003;216:27–44. doi: 10.1016/S0927-7757(02)00499-5. DOI

da Silva Rocha T., Dias D.P., França F.C., de Salles Guerra R.R., de Oliveira Marques L.R.d.C. Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+) Constr. Build. Mater. 2018;178:453–461. doi: 10.1016/j.conbuildmat.2018.05.172. DOI

Assi L.N., Deaver E.E., Ziehl P. Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete. Constr. Build. Mater. 2018;167:372–380. doi: 10.1016/j.conbuildmat.2018.01.193. DOI

Xiong L., Wan Z., Zhang Y., Wang F., Wang J., Kang Y. Fly Ash Particle Size Effect on Pore Structure and Strength of Fly Ash Foamed Geopolymer. Adv. Polym. Technol. 2019;2019:1098027. doi: 10.1155/2019/1098027. DOI

Lemougna P.N., Chinje Melo U.F., Delplancke M.-P., Rahier H. Influence of the activating solution composition on the stability and thermo-mechanical properties of inorganic polymers (geopolymers) from volcanic ash. Constr. Build. Mater. 2013;48:278–286. doi: 10.1016/j.conbuildmat.2013.06.089. DOI

Lemougna P.N., MacKenzie K.J.D., Melo U.F.C. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int. 2011;37:3011–3018. doi: 10.1016/j.ceramint.2011.05.002. DOI

Cheng T.W., Chiu J.P. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 2003;16:205–210. doi: 10.1016/S0892-6875(03)00008-6. DOI

Rieger D., Kovářík T., Říha J., Medlín R., Novotný P., Bělský P., Kadlec J., Holba P. Effect of thermal treatment on reactivity and mechanical properties of alkali activated shale–slag binder. Constr. Build. Mater. 2015;83:26–33. doi: 10.1016/j.conbuildmat.2015.02.024. DOI

Payá J., Monzó J., Borrachero M.V., Tashima M.M. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing; Oxford, UK: 2015. 18—Reuse of aluminosilicate industrial waste materials in the production of alkali-activated concrete binders; pp. 487–518.

Thang N.H., Nhung L.T., Quyen P.V.T.H., Phong D.T., Khe D.T., Van Phuc N. Development of heat resistant geopolymer-based materials from red mud and rice husk ash. AIP Conf. Proc. 2018;1954:040005. doi: 10.1063/1.5033405. DOI

Hwang C.-L., Huynh T.-P. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr. Build. Mater. 2015;101:1–9. doi: 10.1016/j.conbuildmat.2015.10.025. DOI

Kohout J., Koutnik P., Hajkova P., Kohoutova E., Soukup A. Effect of K/Al Molar Ratio on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Polymers. 2021;13:3754. doi: 10.3390/polym13213754. PubMed DOI PMC

Lapeyre J., Ma H., Kumar A. Effect of particle size distribution of metakaolin on hydration kinetics of tricalcium silicate. J. Am. Ceram. Soc. 2019;102:5976–5988. doi: 10.1111/jace.16467. DOI

Rovnanik P., Safrankova K. Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Materials. 2016;9:535. doi: 10.3390/ma9070535. PubMed DOI PMC

Xu H., Van Deventer J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000;59:247–266. doi: 10.1016/S0301-7516(99)00074-5. DOI

Kuenzel C., Neville T.P., Donatello S., Vandeperre L., Boccaccini A.R., Cheeseman C.R. Influence of metakaolin characteristics on the mechanical properties of geopolymers. Appl. Clay Sci. 2013;83–84:308–314. doi: 10.1016/j.clay.2013.08.023. DOI

Kohout J., Koutnik P., Hajkova P., Kohoutova E., Soukup A. Effect of Different Types of Aluminosilicates on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Polymers. 2022;14:4838. doi: 10.3390/polym14224838. PubMed DOI PMC

Yao X., Zhang Z., Zhu H., Chen Y. Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry. Thermochim. Acta. 2009;493:49–54. doi: 10.1016/j.tca.2009.04.002. DOI

Duxson P., Mallicoat S.W., Lukey G.C., Kriven W.M., van Deventer J.S.J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007;292:8–20. doi: 10.1016/j.colsurfa.2006.05.044. DOI

Rowles M.R., O’Connor B.H. Chemical and Structural Microanalysis of Aluminosilicate Geopolymers Synthesized by Sodium Silicate Activation of Metakaolinite. J. Am. Ceram. Soc. 2009;92:2354–2361. doi: 10.1111/j.1551-2916.2009.03191.x. DOI

Yan D., Xie L., Qian X., Ruan S., Zeng Q. Compositional Dependence of Pore Structure, Strengthand Freezing-Thawing Resistance of Metakaolin-Based Geopolymers. Materials. 2020;13:2973. doi: 10.3390/ma13132973. PubMed DOI PMC

Xie J., Kayali O. Effect of initial water content and curing moisture conditions on the development of fly ash-based geopolymers in heat and ambient temperature. Constr. Build. Mater. 2014;67:20–28. doi: 10.1016/j.conbuildmat.2013.10.047. DOI

Koutník P., Soukup A., Bezucha P., Šafář J., Kohout J. Low viscosity metakaolinite based geopolymer binders. Constr. Build. Mater. 2020;230:116978. doi: 10.1016/j.conbuildmat.2019.116978. DOI

Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010;24:1176–1183. doi: 10.1016/j.conbuildmat.2009.12.023. DOI

Aredes F.G.M., Campos T.M.B., Machado J.P.B., Sakane K.K., Thim G.P., Brunelli D.D. Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceram. Int. 2015;41:7302–7311. doi: 10.1016/j.ceramint.2015.02.022. DOI

Nematollahi B., Sanjayan J., Shaikh F.U.A. Matrix design of strain hardening fiber reinforced engineered geopolymer composite. Compos. Part B Eng. 2016;89:253–265. doi: 10.1016/j.compositesb.2015.11.039. DOI

Zhang J., Li S., Li Z., Liu C., Gao Y. Feasibility study of red mud for geopolymer preparation: Effect of particle size fraction. J. Mater. Cycles Waste Manag. 2020;22:1328–1338. doi: 10.1007/s10163-020-01023-4. DOI

Li Z., Gao Y., Zhang J., Zhang C., Chen J., Liu C. Effect of particle size and thermal activation on the coal gangue based geopolymer. Mater. Chem. Phys. 2021;267:124657. doi: 10.1016/j.matchemphys.2021.124657. DOI

Sevim Ö., Demir İ. Optimization of fly ash particle size distribution for cementitious systems with high compactness. Constr. Build. Mater. 2019;195:104–114. doi: 10.1016/j.conbuildmat.2018.11.080. DOI

Escalera E., Antti M.L., Odén M. Thermal treatment and phase formation in kaolinite and illite based clays from tropical regions of Bolivia. IOP Conf. Ser. Mater. Sci. Eng. 2012;31:012017. doi: 10.1088/1757-899X/31/1/012017. DOI

Boháč M., Novotný R., Frajkorová F., Yadav R.S., Opravil T., Palou M. Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin. Int. J. Mater. Metall. Eng. 2015;9:301–305.

Koutnik P. Comparison of Kaolin and Kaolinitic Claystones as Raw Materials for Preparing Meta-Kaolinite-Based Geopolymers. J. Ceram.-Silik. 2019;63:110–123. doi: 10.13168/cs.2019.0003. DOI

Rees C.A., Provis J.L., Lukey G.C., van Deventer J.S.J. The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloids Surf. A Physicochem. Eng. Asp. 2008;318:97–105. doi: 10.1016/j.colsurfa.2007.12.019. DOI

Kuenzel C., Li L., Vandeperre L., Boccaccini A.R., Cheeseman C.R. Influence of sand on the mechanical properties of metakaolin geopolymers. Constr. Build. Mater. 2014;66:442–446. doi: 10.1016/j.conbuildmat.2014.05.058. DOI

Pelisser F., Guerrino E.L., Menger M., Michel M.D., Labrincha J.A. Micromechanical characterization of metakaolin-based geopolymers. Constr. Build. Mater. 2013;49:547–553. doi: 10.1016/j.conbuildmat.2013.08.081. DOI

Latella B.A., Perera D.S., Durce D., Mehrtens E.G., Davis J. Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al ≈ 2 and Na/Al ≈ 1. J. Mater. Sci. 2008;43:2693–2699. doi: 10.1007/s10853-007-2412-1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...