Prepregs for Temperature Resistant Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1606
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015039
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31816841
PubMed Central
PMC6926707
DOI
10.3390/ma12234012
PII: ma12234012
Knihovny.cz E-zdroje
- Klíčová slova
- aluminosilicate matrix, carbon fiber, composite, prepreg, temperature resistant, tensile strength,
- Publikační typ
- časopisecké články MeSH
In this paper, carbon fabric reinforced inorganic matrix composites were prepared. The inorganic matrix based on alkali activated aluminosilicate was used because of its resistance to fire and the temperatures up to 1000 °C. Influence of heat treatment of fabric, high temperature treatment of composite and preparation method on the mechanical properties and morphology of the composites were studied. The preparation of composites with the subsequent steps of impregnation, layering and curing of the composites was compared with the prepreg preparation method, which separates the impregnation of the reinforcement from the production of the composite. The SEM photographs show no differences in morphology between composites prepared from heat treated fabric and composites prepared from original fabrics. All four series of samples were comparatively saturated with matrix. Despite this, tensile properties of heat-treated fabric composites were negatively affected. While composites with heat-treated fabric reached the tensile strength up to 274 MPa, composites prepared without heat-treated fabric exhibited strengths higher than 336 MPa. Samples exposed to temperatures reaching 600 °C retained up to 40% of their original strength. The effect of composite preparation method on the tensile properties of the composites has not been proved.
Zobrazit více v PubMed
Sun G., Tong S., Chen D., Gong Z., Li Q. Mechanical properties of hybrid composites reinforced by carbon and basalt fibers. Int. J. Mech. Sci. 2018;148:636–651. doi: 10.1016/j.ijmecsci.2018.08.007. DOI
Krystek J., Kroupa T., Kottner R. Identification of mechanical properties from tensile and compression tests of unidirectional carbon composite; Proceedings of the 48th International Scientific Conference on Experimental Stress Analysis; Olomouc, Czech. 31 May–3 June 2010.
Papakonstantinou C.G., Balaguru P., Lyon R.E. Comparative study of high temperature composites. Compos. Part B. 2001;32:637–649. doi: 10.1016/S1359-8368(01)00042-7. DOI
Tran T.Q., Lee J.K.Y., Chinnappan A., Jayathilaka W.A.D.M., Ji D., Kumar V.V., Ramakrishna S. Strong, Lightweight, and Highly Conductive CNT/Au/Cu Wires from Sputtering and Electroplating Methods. J. Mater. Sci. Technol. 2019 doi: 10.1016/j.jmst.2019.08.033. in press. DOI
Duong H.M., Myint S.M., Tran T.Q., Le D.K. Carbon Nanotube Fibers and Yarns. Woodhead Publishing; London, UK: 2020. Post-spinning treatments to carbon nanotube fibers; pp. 103–134.
Yan S., He P., Zhang Y., Jia D., Wang J., Duan X., Yang Z., Zhou Y. Preparation and in-situ high-temperature mechanical properties of Cf-SiCf reinforced geopolymer composites. Ceram. Int. 2017;43:549–555. doi: 10.1016/j.ceramint.2016.09.192. DOI
Silva F.J., Thaumaturgo C. Fibre reinforcement and fracture response in geopolymeric mortars. Fatique Fract Enging Struct. 2003;26:167–172. doi: 10.1046/j.1460-2695.2003.00625.x. DOI
Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., van Deventer J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005;269:47–58. doi: 10.1016/j.colsurfa.2005.06.060. DOI
Kuenzel C., Li L., Vandeperre L., Boccaccini A.R., Cheeseman C.R. Influence of sand on the mechanical properties of metakaolin geopolymers. Constr. Build. Mater. 2014;66:442–446. doi: 10.1016/j.conbuildmat.2014.05.058. DOI
Kuenzel C., Vandeperre L.J., Donatello S., Boccaccini A.R., Cheeseman C., Brown P. Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers. J. Am. Ceram. Soc. 2012;95:3270–3277. doi: 10.1111/j.1551-2916.2012.05380.x. DOI
Duxson P., Mallicoat S.W., Lukey G.C., Kriven W.M., van Deventer J.S.J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007;292:8–20. doi: 10.1016/j.colsurfa.2006.05.044. DOI
Aredes F.G.M., Campos T.M.B., Machado J.P.B., Sakane K.K., Thim G.P., Brunelli D.D. Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceram. Int. 2015;41:7302–7311. doi: 10.1016/j.ceramint.2015.02.022. DOI
Barbosa V.F.F., MacKenzie K.J.D. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialete. Mater. Res. Bull. 2003;38:319–331. doi: 10.1016/S0025-5408(02)01022-X. DOI
Kovářík T., Rieger D., Kadlec J., Křenek T., Kullová L., Pola M., Bělský P., Franče P., Říha J. Thermomechanical properties of particle-reinforced geopolymer composite with various aggregate gradation of fine ceramic filler. Constr. Build. Mater. 2017;143:599–606. doi: 10.1016/j.conbuildmat.2017.03.134. DOI
He P., Jia D., Lin T., Wang M., Zhou Y. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram. Int. 2010;36:1447–1453. doi: 10.1016/j.ceramint.2010.02.012. DOI
He P., Jia D., Wang M., Zhou Y. Improvement of high-temperature mechanical properties of heat treated Cf/geopolymer composites by Sol-SiO2 impregnation. J. Eur. Ceram. Soc. 2010;30:3053–3061. doi: 10.1016/j.jeurceramsoc.2010.07.031. DOI
Dias D.P., Thaumaturgo C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 2005;27:49–54. doi: 10.1016/j.cemconcomp.2004.02.044. DOI
Amaro A.M., Pinto M.I.M., Reis P.N.B., Neto M.A., Lopes S.M.R. Structural integrity of glass/epoxy composites embedded in cement or geopolymer mortars. Compos. Struct. 2018;206:509–516. doi: 10.1016/j.compstruct.2018.08.060. DOI
Samal S., Marvalová B., Petríková I., Vallons K.A.M., Lomov S.V., Rahier H. Impact and post impact behavior of fabric reinforced geopolymer composite. Constr. Build. Mater. 2016;127:111–124. doi: 10.1016/j.conbuildmat.2016.09.145. DOI
Kong D.L.Y., Sanjayan J.G. Damage behavior of geopolymer composites exposed to elevated temperatures. Cem. Concr. Compos. 2008;30:986–991. doi: 10.1016/j.cemconcomp.2008.08.001. DOI
Bernal S.A., Bejarano J., Garzón C., Mejía de Gutiérrez R., Delvasto S., Rodríguez E.D. Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Compos. Part B Eng. 2012;43:1919–1928. doi: 10.1016/j.compositesb.2012.02.027. DOI
Mills-Brown J., Potter K., Foster S., Batho T. Thermal and tensile properties of polysialate composites. Ceram. Int. 2013;39:8917–8924. doi: 10.1016/j.ceramint.2013.04.087. DOI
Krystek J., Laš V., Pompe V., Hájková P. Tensile and bending test of carbon/epoxy and carbon/geopolymer composites after temperature conditioning. MATEC Web Conf. 2018;157 doi: 10.1051/matecconf/201815705014. DOI
Yan S., He P., Jia D., Yang Z., Duan X., Wang S., Zhou Y. Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites. Ceram. Int. 2016;42:7837–7843. doi: 10.1016/j.ceramint.2016.01.197. DOI
Lin T., Jia D., He P., Wang M., Liang D. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites. Mater. Sci. Eng. A. 2008;497:181–185. doi: 10.1016/j.msea.2008.06.040. DOI
Yuan J., He P., Jia D., Yan S., Cai D., Xu L., Yang Z., Duan X., Wang S., Zhou Y. SiC fiber reinforced geopolymer composites, part 1: Short SiC fiber. Ceram. Int. 2016;42:5345–5352. doi: 10.1016/j.ceramint.2015.12.067. DOI
Shin J.H., Kim D., Centea T., Nutt S.R. Thermoplastic prepreg with partially polymerized matrix: Material and process development for efficient part manufacturing. Compos. Part A Appl. Sci. Manuf. 2019;119:154–164. doi: 10.1016/j.compositesa.2019.01.009. DOI
Hájková P. Kaolinite Claystone-Based Geopolymer Materials: Effect of Chemical Composition and Curing Conditions. Minerals. 2018;8:444. doi: 10.3390/min8100444. DOI
Hybrid Prepreg Tapes for Composite Manufacturing: A Case Study