Hybrid Prepreg Tapes for Composite Manufacturing: A Case Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kazuistiky, časopisecké články
PubMed
35057333
PubMed Central
PMC8812281
DOI
10.3390/ma15020619
PII: ma15020619
Knihovny.cz E-zdroje
- Klíčová slova
- Weibull distribution, controlled spreading, glass multifilament, hybrid, prepreg tapes, roving, tensile properties,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
The aim of this research was the preparation and characterization of hybrid prepreg tapes from glass multifilament roving (circular cross-section). The fiber, roving, and tape strength distribution was characterized by exploratory data analysis tools (especially quantile-quantile plot) and modeled by the three parameters' Weibull distribution. For estimation of Weibull model parameters, the noniterative technique based on the so-called Weibull moments was used. It was shown that the prepared hybrid prepreg tapes prepared by controlled mechanical spreading technology developed by the authors improved mechanical tensile properties and can be used for the preparation of composites of complicated forms by robotic winding.
Zobrazit více v PubMed
Ngo T.D., editor. Composite and Nanocomposite Materials—From Knowledge to Industrial Applications. IntechOpen; London, UK: 2020. Introduction to Composite Materials. DOI
Sathishkumar T.P., Satheeshkumar S., Naveen J. Glass fiber-reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014;33:1258–1275. doi: 10.1177/0731684414530790. DOI
Nunes J.P., Van Hattum F.W.J., Bernardo C.A., Silva J.F., Marques A.T. Advances in Thermoplastic Matrix Towpregs Processing. J. Thermoplast. Compos. Mater. 2004;17:523–544. doi: 10.1177/0892705704038470. DOI
Global Advanced Polymer Composites Market is Expected to Reach USD 16.83 Billion by 2025: Fior Markets, GlobeNewswire News Room, 20 February 2020. [(accessed on 11 February 2021)]. Available online: http://www.globenewswire.com/news-release/2020/02/20/1988157/0/en/Global-Advanced-Polymer-Composites-Market-is-Expected-to-Reach-USD-16-83-Billion-by-2025-Fior-Markets.html.
A Review of the Global Composites Market and Turkish Composites Market. [(accessed on 11 February 2021)]. Available online: https://www.reinforcer.com/en/category/detail/A-Review-of-the-Global-Composites-Market-and-Turkish-Composites-Market/61/350/0.
Thomason J., Jenkins P., Yang L. Glass Fibre Strength—A Review with Relation to Composite Recycling. Fibers. 2016;4:18. doi: 10.3390/fib4020018. DOI
Bauer R.S., Stewart S.L., Stenzenberger H.D. Composite Materials, Thermoset Polymer-Matrix. Wiley; Hoboken, NJ, USA: 2000. DOI
Thomason J., Yang L., Meier R. The properties of glass fibres after conditioning at composite recycling temperatures. Compos. Part A Appl. Sci. Manuf. 2014;61:201–208. doi: 10.1016/j.compositesa.2014.03.001. DOI
Hu N., editor. BoD–Books on Demand. IntechOpen; Rijeka, Croatia: 2012. Composites and their properties.
Mesquita F., Bucknell S., Leray Y., Lomov S.V., Swolfs Y. Single carbon and glass fibre properties characterised using large data sets obtained through automated single fibre tensile testing. Compos. Part A Appl. Sci. Manuf. 2021;145:106389. doi: 10.1016/j.compositesa.2021.106389. DOI
Mei M., He Y., Yang X., Wei K., Qu Z., Fang D. Shear deformation characteristics and defect evolution of the biaxial ±45° and 0/90° glass non-crimp fabrics. Compos. Sci. Technol. 2020;193:108137. doi: 10.1016/j.compscitech.2020.108137. ISSN 0266-3538. DOI
Artemenko S.E. Polymer Composite Materials Made from Carbon, Basalt, and Glass Fibres. Structure and Properties. Fibre Chem. 2003;35:226–229. doi: 10.1023/A:1026170209171. DOI
Venkataraman M., Militký J., Mishra R., Kremenakova D., Petru M. Tensile Properties of Glass Roving and Hybrid Tapes. IOP Conf. Ser. Mater. Sci. Eng. 2019;553:012055. doi: 10.1088/1757-899X/553/1/012055. DOI
Kovacevic S., Brnada S., Dobnik-Dubrovski P. Analysis of the Mechanical Properties of Woven Fabrics from Glass and Basalt Yarns. Fibres Text. East. Eur. 2015;23:83–91. doi: 10.5604/12303666.1167424. DOI
Summerscales J., Short D. Carbon fibre and glass fibre hybrid reinforced plastics. Composites. 1978;9:157–166. doi: 10.1016/0010-4361(78)90341-5. DOI
Biron M. Chapter 6—Thermoplastic Composites. In: Biron M., editor. Thermoplastics and Thermoplastic Composites. 3rd ed. William Andrew Publishing; Norwich, NY, USA: 2018. pp. 821–882. DOI
Swolfs Y., Verpoest I., Gorbatikh L. Recent advances in fibre-hybrid composites: Materials selection, opportunities and applications. Int. Mater. Rev. 2019;64:181–215. doi: 10.1080/09506608.2018.1467365. DOI
Binetruy C. Composites Manufacturing Overview of Current Advances and Challenges for the Future; Proceedings of the the ECCM 16—16th European Conference on Composite Materials; Seville, Spain. 22–26 June 2014; Jun 22–26,
Maddaloni G., Parcesepe E., Franco A., Bonati A., Occhiuzzi A., Pecce M.R. Experimental characterization of tensile strength of steel and fibre rovings also under environmental conditioning. Compos. Part B Eng. 2021;217:108895. doi: 10.1016/j.compositesb.2021.108895. DOI
Venkataraman M., Militky J., Pulicek R., Novotna J. Sophisticated Glass Tapes for Fabrication of Composites. J. Fiber Bioeng. Inform. 2019;12:35–42. doi: 10.3993/jfbim00316. DOI
El-Dessouky H.M., Lawrence C., Mcgrail T., Broughton B. Ultra-Light Weight Thermoplastic Composites: Tow-Spreading Technology; Proceedings of the ECCM15—15th European Conference on Composite Materials; Venice, Italy. 24–28 June 2012.
Molyneux M., Murray P., Murray B.P. Prepreg, tape and fabric technology for advanced composites. Composites. 1983;14:87–91. doi: 10.1016/S0010-4361(83)80003-2. DOI
Haincová E., Hájková P., Kohout J. Prepregs for Temperature Resistant Composites. Materials. 2019;12:4012. doi: 10.3390/ma12234012. PubMed DOI PMC
Rinne H. The Weibull Distribution. A Handbook. Chapman & Hall; Boca Raton, FL, USA: 2009.
Wilson S. Lateral spreading of fibre tows. J. Eng. Math. 1997;32:19–26. doi: 10.1023/A:1004253531061. DOI
Irfan M.S., Machavaram V.R., Mahendran R.S., Shotton-Gale N., Wait C.F., Paget M.A., Hudson M., Fernando G.F. Lateral spreading of a fiber bundle via mechanical means. J. Compos. Mater. 2011;46:311–330. doi: 10.1177/0021998311424624. DOI
Militký J., Venkataraman M., Baheti V., Novotná J., Pulicek R., Samková A., Karolína V., Pavel S., Dana K., Rajesh M., et al. Recent Trends in Fibrous Material Science. Technical University of Liberec; Liberec, Czech Republic: 2019. Characterization and Strength Distribution of Fibrous Glass Tapes; pp. 9–52.
Neckar B. Yarn. Creation, Structure and Properties. SNTL; Prague, Czech Republic: 1990. (In Czech)
Meloun M., Militky J. Book-035 Statistical Data Analysis, A Practical Guide with 1250 Exercises and Answer Key on CD. Woodhead Publishing; New Delhi, India: 2011.
Naresh K., Shankar K., Velmurugan R. Reliability analysis of tensile strengths using Weibull distribution in glass/epoxy and carbon/epoxy composites. Compos. Part B Eng. 2018;133:129–144. doi: 10.1016/j.compositesb.2017.09.002. DOI
Monteiro S.N., Margem F.M., Braga F.D.O., da Luz F.S., Simonassi N.T. Weibull analysis of the tensile strength dependence with fiber diameter of giant bamboo. J. Mater. Res. Technol. 2017;6:317–322. doi: 10.1016/j.jmrt.2017.07.001. DOI
Pan N. A Detailed Examination of the Translation Efficiency of Fiber Strength into Composite Strength. J. Reinf. Plast. Compos. 1995;14:2–28. doi: 10.1177/073168449501400101. DOI