Effect of Different Types of Aluminosilicates on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018119
Ministry of Education, Youth and Sports of the Czech Republic
0025218
Ministry of Industry and Trade of the Czech Republic
PubMed
36432964
PubMed Central
PMC9697568
DOI
10.3390/polym14224838
PII: polym14224838
Knihovny.cz E-zdroje
- Klíčová slova
- characterization, claystone, geopolymer, mechanical properties, metakaolin, metakaolinite, thermal properties,
- Publikační typ
- časopisecké články MeSH
In this study, the effect of different types of aluminosilicates on the thermo-mechanical properties of metakaolinite-based geopolymer binders and composites was examined. The metakaolinite-based geopolymer binders and composites were produced from three different types of aluminosilicates (one metakaolin and two calcined claystones) and a potassium alkaline activator. Chamotte was added as a filler, amounting to 65% by volume, to create geopolymer composites. Geopolymer binders were characterized by X-ray diffraction, rotary rheometer and scanning electron microscopy. The mechanical properties, thermal dilatation and thermal conductivity were investigated on geopolymer composites with three different aluminosilicates before and after exposure to high temperatures (up to 1200 °C). The results showed that the geopolymer binders prepared from calcined claystones had a lower dynamic viscosity (787 and 588 mPa·s) compared to the geopolymer binders prepared from metakaolin (1090 mPa·s). Geopolymer composites based on metakaolin had lower shrinkage (0.6%) and higher refractoriness (1520 °C) than geopolymers from calcined claystones (0.9% and 1.5%, 1500 °C and 1470 °C). Geopolymers based on calcined kaolinitic claystones are a promising material with higher compressive (95.2 and 71.5 MPa) and flexural strength (12.4 and 10.7 MPa) compared to geopolymers based on metakaolin (compressive strength 57.7 MPa).
Zobrazit více v PubMed
Cong P., Cheng Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. 2021;8:283–314. doi: 10.1016/j.jtte.2021.03.004. DOI
Bouna L., Ait El Fakir A., Benlhachemi A., Draoui K., Ezahri M., Bakiz B., Villain S., Guinneton F., Elalem N. Synthesis and characterization of mesoporous geopolymer based on Moroccan kaolinite rich clay. Appl. Clay Sci. 2020;196:105764. doi: 10.1016/j.clay.2020.105764. DOI
Albidah A., Alghannam M., Abbas H., Almusallam T., Al-Salloum Y. Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. J. Mater. Res. Technol. 2021;10:84–98. doi: 10.1016/j.jmrt.2020.11.104. DOI
Duxson P., Lukey G.C., van Deventer J.S.J. The thermal evolution of metakaolin geopolymers: Part 2—Phase stability and structural development. J. Non-Cryst. Solids. 2007;353:2186–2200. doi: 10.1016/j.jnoncrysol.2007.02.050. DOI
Wang X., Zhang C., Zhu H., Wu Q. Reaction kinetics and mechanical properties of a mineral-micropowder/metakaolin-based geopolymer. Ceram. Int. 2022;48:14173–14181. doi: 10.1016/j.ceramint.2022.01.304. DOI
Albidah A., Alqarni A.S., Abbas H., Almusallam T., Al-Salloum Y. Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures. Constr. Build. Mater. 2022;317:125910. doi: 10.1016/j.conbuildmat.2021.125910. DOI
Rovnanik P., Safrankova K. Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Materials. 2016;9:535. doi: 10.3390/ma9070535. PubMed DOI PMC
Davidovits J. Geopolymer: Chemistry and Applications. Institut Géopolymère; Saint-Quentin, France: 2008. p. 285.
Sabbatini A., Vidal L., Pettinari C., Sobrados I., Rossignol S. Control of shaping and thermal resistance of metakaolin-based geopolymers. Mater. Des. 2017;116:374–385. doi: 10.1016/j.matdes.2016.12.039. DOI
Lahoti M., Wong K.K., Yang E.-H., Tan K.H. Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceram. Int. 2018;44:5726–5734. doi: 10.1016/j.ceramint.2017.12.226. DOI
Aliabdo A.A., Abd Elmoaty A.E.M., Salem H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016;121:694–703. doi: 10.1016/j.conbuildmat.2016.06.062. DOI
Hanzlíček T., Steinerová M., Straka P., Perná I., Siegl P., Švarcová T. Reinforcement of the terracotta sculpture by geopolymer composite. Mater. Des. 2009;30:3229–3234. doi: 10.1016/j.matdes.2008.12.015. DOI
Lancellotti I., Barbieri L., Leonelli C. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing; Oxford, UK: 2015. 20—Use of alkali-activated concrete binders for toxic waste immobilization; pp. 539–554.
Raza M.H., Zhong R.Y., Khan M. Recent advances and productivity analysis of 3D printed geopolymers. Addit. Manuf. 2022;52:102685. doi: 10.1016/j.addma.2022.102685. DOI
Xia M., Sanjayan J. Method of formulating geopolymer for 3D printing for construction applications. Mater. Des. 2016;110:382–390. doi: 10.1016/j.matdes.2016.07.136. DOI
Alzeer M.I.M., MacKenzie K.J.D., Keyzers R.A. Porous aluminosilicate inorganic polymers (geopolymers): A new class of environmentally benign heterogeneous solid acid catalysts. Appl. Catal. A Gen. 2016;524:173–181. doi: 10.1016/j.apcata.2016.06.024. DOI
Zhang Z., Wang H. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing; Oxford, UK: 2015. 22—Alkali-activated cements for protective coating of OPC concrete; pp. 605–626.
Haincova E., Hajkova P., Kohout J. Prepregs for Temperature Resistant Composites. Materials. 2019;12:4012. doi: 10.3390/ma12234012. PubMed DOI PMC
Kohoutova E., Hajkova P., Kohout J., Soukup A. Effect of Potassium Phosphate Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites. Materials. 2021;15:61. doi: 10.3390/ma15010061. PubMed DOI PMC
Celik A., Yilmaz K., Canpolat O., Al-mashhadani M.M., Aygörmez Y., Uysal M. High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Constr. Build. Mater. 2018;187:1190–1203. doi: 10.1016/j.conbuildmat.2018.08.062. DOI
Kohout J., Koutník P., Bezucha P., Kwoczynski Z. Leachability of the metakaolinite-rich materials in different alkaline solutions. Mater. Today Commun. 2019;21:10066. doi: 10.1016/j.mtcomm.2019.100669. DOI
Amran Y.H.M., Alyousef R., Alabduljabbar H., El-Zeadani M. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020;251:119679. doi: 10.1016/j.jclepro.2019.119679. DOI
Prasanphan S., Wannagon A., Kobayashi T., Jiemsirilers S. Reaction mechanisms of calcined kaolin processing waste-based geopolymers in the presence of low alkali activator solution. Constr. Build. Mater. 2019;221:409–420. doi: 10.1016/j.conbuildmat.2019.06.116. DOI
Hájková P. Kaolinite Claystone-Based Geopolymer Materials: Effect of Chemical Composition and Curing Conditions. Minerals. 2018;8:444. doi: 10.3390/min8100444. DOI
Koutník P., Soukup A., Bezucha P., Šafář J., Kohout J. Low viscosity metakaolinite based geopolymer binders. Constr. Build. Mater. 2020;230:116978. doi: 10.1016/j.conbuildmat.2019.116978. DOI
Hwang C.-L., Huynh T.-P. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr. Build. Mater. 2015;101:1–9. doi: 10.1016/j.conbuildmat.2015.10.025. DOI
Lemougna P.N., MacKenzie K.J.D., Melo U.F.C. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int. 2011;37:3011–3018. doi: 10.1016/j.ceramint.2011.05.002. DOI
Gómez-Casero M.A., De Dios-Arana C., Bueno-Rodríguez J.S., Pérez-Villarejo L., Eliche-Quesada D. Physical, mechanical and thermal properties of metakaolin-fly ash geopolymers. Sustain. Chem. Pharm. 2022;26:100620. doi: 10.1016/j.scp.2022.100620. DOI
Tchakouté H.K., Rüscher C.H. Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: A comparative study. Appl. Clay Sci. 2017;140:81–87. doi: 10.1016/j.clay.2017.02.002. DOI
Xu H., Van Deventer J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000;59:247–266. doi: 10.1016/S0301-7516(99)00074-5. DOI
Kuenzel C., Neville T.P., Donatello S., Vandeperre L., Boccaccini A.R., Cheeseman C.R. Influence of metakaolin characteristics on the mechanical properties of geopolymers. Appl. Clay Sci. 2013;83–84:308–314. doi: 10.1016/j.clay.2013.08.023. DOI
Yao X., Zhang Z., Zhu H., Chen Y. Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry. Thermochim. Acta. 2009;493:49–54. doi: 10.1016/j.tca.2009.04.002. DOI
Duxson P., Mallicoat S.W., Lukey G.C., Kriven W.M., van Deventer J.S.J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007;292:8–20. doi: 10.1016/j.colsurfa.2006.05.044. DOI
Rowles M.R., O’Connor B.H. Chemical and Structural Microanalysis of Aluminosilicate Geopolymers Synthesized by Sodium Silicate Activation of Metakaolinite. J. Am. Ceram. Soc. 2009;92:2354–2361. doi: 10.1111/j.1551-2916.2009.03191.x. DOI
Yan D., Xie L., Qian X., Ruan S., Zeng Q. Compositional Dependence of Pore Structure, Strengthand Freezing-Thawing Resistance of Metakaolin-Based Geopolymers. Materials. 2020;13:2973. doi: 10.3390/ma13132973. PubMed DOI PMC
Kohout J., Koutnik P., Hajkova P., Kohoutova E., Soukup A. Effect of K/Al Molar Ratio on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Polymers. 2021;13:3754. doi: 10.3390/polym13213754. PubMed DOI PMC
Xie J., Kayali O. Effect of initial water content and curing moisture conditions on the development of fly ash-based geopolymers in heat and ambient temperature. Constr. Build. Mater. 2014;67:20–28. doi: 10.1016/j.conbuildmat.2013.10.047. DOI
Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010;24:1176–1183. doi: 10.1016/j.conbuildmat.2009.12.023. DOI
Aredes F.G.M., Campos T.M.B., Machado J.P.B., Sakane K.K., Thim G.P., Brunelli D.D. Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceram. Int. 2015;41:7302–7311. doi: 10.1016/j.ceramint.2015.02.022. DOI
Lemougna P.N., Wang K.-t., Tang Q., Melo U.C., Cui X.-m. Recent developments on inorganic polymers synthesis and applications. Ceram. Int. 2016;42:15142–15159. doi: 10.1016/j.ceramint.2016.07.027. DOI
Nematollahi B., Sanjayan J., Shaikh F.U.A. Matrix design of strain hardening fiber reinforced engineered geopolymer composite. Compos. Part B: Eng. 2016;89:253–265. doi: 10.1016/j.compositesb.2015.11.039. DOI
Jiang X., Zhang Y., Xiao R., Polaczyk P., Zhang M., Hu W., Bai Y., Huang B. A comparative study on geopolymers synthesized by different classes of fly ash after exposure to elevated temperatures. J. Clean. Prod. 2020;270:122500. doi: 10.1016/j.jclepro.2020.122500. DOI
San Nicolas R., Cyr M., Escadeillas G. Characteristics and applications of flash metakaolins. Appl. Clay Sci. 2013;83–84:253–262. doi: 10.1016/j.clay.2013.08.036. DOI
Xu H., Van Deventer J.S.J. Geopolymerisation of multiple minerals. Miner. Eng. 2002;15:1131–1139. doi: 10.1016/S0892-6875(02)00255-8. DOI
Koutnik P. Comparison of Kaolin and Kaolinitic Claystones as Raw Materials for Preparing Meta-Kaolinite-Based Geopolymers. Ceram. Silik. 2019;63:110–123. doi: 10.13168/cs.2019.0003. DOI
Kohout J., Koutnik P. Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Materials. 2020;13:2395. doi: 10.3390/ma13102395. PubMed DOI PMC
Rovnaník P., Rovnaníková P., Vyšvařil M., Grzeszczyk S., Janowska-Renkas E. Rheological properties and microstructure of binary waste red brick powder/metakaolin geopolymer. Constr. Build. Mater. 2018;188:924–933. doi: 10.1016/j.conbuildmat.2018.08.150. DOI
Cheng T.W., Chiu J.P. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 2003;16:205–210. doi: 10.1016/S0892-6875(03)00008-6. DOI
Da Silva Godinho D.d.S., Pelisser F., Bernardin A.M. High temperature performance of geopolymers as a function of the Si/Al ratio and alkaline media. Mater. Lett. 2022;311:131625. doi: 10.1016/j.matlet.2021.131625. DOI
He P., Jia D., Wang M., Zhou Y. Thermal evolution and crystallization kinetics of potassium-based geopolymer. Ceram. Int. 2011;37:59–63. doi: 10.1016/j.ceramint.2010.08.008. DOI
Scanferla P., Gharzouni A., Texier-Mandoki N., Bourbon X., Rossignol S. Effects of potassium-silicate, sands and carbonates concentrations on metakaolin-based geopolymers for high-temperature applications. Open Ceram. 2022;10:100257. doi: 10.1016/j.oceram.2022.100257. DOI
Svetlana P., Ameni G., Monique T.T., Nathalie T.-M., Xavier B., Sylvie R. Effect of water on the thermal properties of argillite-based geopolymers. J. Non-Cryst. Solids. 2020;541:120073. doi: 10.1016/j.jnoncrysol.2020.120073. DOI
Chen W., Garofalo A.C., Geng H., Liu Y., Wang D., Li Q. Effect of high temperature heating on the microstructure and performance of cesium-based geopolymer reinforced by cordierite. Cem. Concr. Compos. 2022;129:104474. doi: 10.1016/j.cemconcomp.2022.104474. DOI
Gomes S., Frezet L., Petit E., Petlickaia S., Rossignol S., Texier-Mandoki N., Renaudin G. Temperature stability of an argillite/K-geopolymer composite: Impact of argillite filler on dimensional behavior. Open Ceram. 2021;5:100081. doi: 10.1016/j.oceram.2021.100081. DOI
Wang X., Zhang C., Wu Q., Zhu H., Liu Y. Thermal properties of metakaolin-based geopolymer modified by the silane coupling agent. Mater. Chem. Phys. 2021;267:124655. doi: 10.1016/j.matchemphys.2021.124655. DOI
Selmani S., Sdiri A., Bouaziz S., Joussein E., Rossignol S. Effects of metakaolin addition on geopolymer prepared from natural kaolinitic clay. Appl. Clay Sci. 2017;146:457–467. doi: 10.1016/j.clay.2017.06.019. DOI
ASTM International; West Conshohocken, PA, USA: 2018. Standard Terminology Relating to Refractories.
Lemougna P.N., Adediran A., Yliniemi J., Ismailov A., Levanen E., Tanskanen P., Kinnunen P., Roning J., Illikainen M. Thermal stability of one-part metakaolin geopolymer composites containing high volume of spodumene tailings and glass wool. Cem. Concr. Compos. 2020;114:103792. doi: 10.1016/j.cemconcomp.2020.103792. DOI
Agustini N.K.A., Triwiyono A., Sulistyo D., Suyitno Effects of water to solid ratio on thermal conductivity of fly ash-based geopolymer paste. IOP Conf. Ser. Earth Environ. Sci. 2020;46:6. doi: 10.1088/1755-1315/426/1/012010. DOI
Luikov A.V., Shashkov A.G., Vasiliev L.L., Fraiman Y.E. Thermal conductivity of porous systems. Int. J. Heat Mass Transf. 1968;11:117–140. doi: 10.1016/0017-9310(68)90144-0. DOI
Amin M., Elsakhawy Y., Abu el-hassan K., Abdelsalam B.A. Behavior evaluation of sustainable high strength geopolymer concrete based on fly ash, metakaolin, and slag. Case Stud. Constr. Mater. 2022;16:e00976. doi: 10.1016/j.cscm.2022.e00976. DOI
Aygörmez Y., Canpolat O., Al-mashhadani M.M., Uysal M. Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Constr. Build. Mater. 2020;235:117502. doi: 10.1016/j.conbuildmat.2019.117502. DOI