Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28773657
PubMed Central
PMC5456915
DOI
10.3390/ma9070535
PII: ma9070535
Knihovny.cz E-zdroje
- Klíčová slova
- chamotte, fly ash, geopolymer, high temperatures, metakaolin, microstructure,
- Publikační typ
- časopisecké články MeSH
Geopolymers are generally appreciated for their good resistance against high temperatures. This paper compares the influence of thermal treatment with temperatures ranging from 200 to 1200 °C on the mechanical properties and microstructure of geopolymers based on two different aluminosilicate precursors, metakaolin and fly ash. Moreover, the paper is also aimed at characterizing the effect of chamotte aggregate on the performance of geopolymers subjected to high temperatures. Thermal treatment leads to a deterioration in the strength of metakaolin geopolymer, whereas fly ash geopolymer gains strength upon heating. The formation of albite above 900 °C is responsible for the fusion of geopolymer matrix during exposure to 1200 °C, which leads to the deformation of the geopolymer samples. Chamotte aggregate improves the performance of geopolymer material by increasing the thermal stability of geopolymers via sintering of the aggregate particles with the geopolymer matrix in the contact zone.
Zobrazit více v PubMed
Davidovits J. Geopolymer Chemistry & Applications. 3rd ed. Institute Geopolymere; Saint-Quentin, France: 2011.
Duxson P., Fernández-Jiménez A., Provis J.L., Luckey G.C., Palomo A., van Deventer J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007;42:2917–2933. doi: 10.1007/s10853-006-0637-z. DOI
Messina F., Ferone C., Colangelo F., Cioffi R. Low temperature alkaline activation of weathered fly ash: Influence of mineral admixtures on early age performance. Constr. Build. Mater. 2015;86:169–177. doi: 10.1016/j.conbuildmat.2015.02.069. DOI
Hwang C.-L., Huynh T.-P. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr. Build. Mater. 2015;101:1–9. doi: 10.1016/j.conbuildmat.2015.10.025. DOI
Khankhaje E., Hussin M.W., Mirza J., Rafieizonooz M., Salim M.R., Siong H.C., Warid M.N.M. On blended cement and geopolymer concretes containing palm oil fuel ash. Mater. Des. 2016;89:385–398. doi: 10.1016/j.matdes.2015.09.140. DOI
Ferone C., Colangelo F., Messina F., Santoro L., Cioffi R. Recycling of pre-washed municipal solid waste incinerator fly ash in the manufacturing of low temperature setting geopolymer materials. Materials. 2013;6:3420–3437. doi: 10.3390/ma6083420. PubMed DOI PMC
Ye N., Yang J., Liang S., Hu Y., Hu J., Xiao B., Huang Q. Synthesis and strength optimization of one-part geopolymer based on red mud. Constr. Build. Mater. 2016;111:317–325. doi: 10.1016/j.conbuildmat.2016.02.099. DOI
Haddad R.H., Alshbuol O. Production of geopolymer concrete using natural pozzolan: A parametric study. Constr. Build. Mater. 2016;114:699–707. doi: 10.1016/j.conbuildmat.2016.04.011. DOI
Molino B., De Vincenzo A., Ferone C., Messina F., Colangelo F., Cioffi R. Recycling of clay sediments for geopolymer binder production. A new perspective for reservoir management in the framework of Italian legislation: The Occhito reservoir case study. Materials. 2014;7:5603–5616. doi: 10.3390/ma7085603. PubMed DOI PMC
Erdogan S.T. Inexpensive intumescent alkali-activated natural pozzolan pastes. J. Eur. Ceram. Soc. 2015;35:2663–2670. doi: 10.1016/j.jeurceramsoc.2015.03.017. DOI
Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 2005;35:1124–1132. doi: 10.1016/j.cemconres.2004.06.031. DOI
Grutzeck M., Kwan S., DiCola M. Zeolite formation in alkali-activated cementitious systems. Cem. Concr. Res. 2004;34:949–955. doi: 10.1016/j.cemconres.2003.11.003. DOI
Koloušek D., Brus J., Urbanova M., Andertova J., Hulinsky V., Vorel J. Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers. J. Mater. Sci. 2007;42:9267–9275. doi: 10.1007/s10853-007-1910-5. DOI
Brus J., Kobera L., Urbanova M., Koloušek D., Kotek J. Insights into the Structural Transformations of Aluminosilicate Inorganic Polymers: A Comprehensive Solid-State NMR Study. J. Phys. Chem. C. 2012;116:14627–14637. doi: 10.1021/jp300181q. DOI
Lyon R.E., Balaguru P.N., Fooden A., Sorathia U., Davidovits J., Davidovits M. Fire resistant aluminosilicate composites. Fire Mater. 1997;21:67–73. doi: 10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N. DOI
Barbosa V.F.F., Mac Kenzie K.J.D. Synthesis and thermal behaviour of potassium sialate geopolymers. Mater. Lett. 2003;57:1477–1482. doi: 10.1016/S0167-577X(02)01009-1. DOI
Rahier H., Wastials J., Biesemans M., Willem R., Van Assche G., Van Mele B. Reaction mechanism, kinetics and high temperature transformations of geopolymers. J. Mater. Sci. 2007;42:9282–9296. doi: 10.1007/s10853-006-0568-8. DOI
Bakharev T. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concr. Res. 2006;36:1134–1147. doi: 10.1016/j.cemconres.2006.03.022. DOI
Barbosa V.F.F., Mac Kenzie K.J.D. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 2003;38:319–331. doi: 10.1016/S0025-5408(02)01022-X. DOI
Davidivits J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. 1991;37:1633–1656. doi: 10.1007/BF01912193. DOI
Duxson P., Luckey G.C., van Deventer J.S.J. Thermal evolution of metakaolin geopolymers: Part I—Physical evolution. J. Non-Cryst. Solids. 2006;352:5541–5555. doi: 10.1016/j.jnoncrysol.2006.09.019. DOI
Duxson P., Luckey G.C., van Deventer J.S.J. Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J. Mater. Sci. 2007;42:3044–3054. doi: 10.1007/s10853-006-0535-4. DOI
Van Riessen A. Thermo-mechanical and microstructural characterization of sodium-poly(sialate-siloxo) (Na-PSS) geopolymers. J. Mater. Sci. 2007;42:3117–3123.
Rovnaníková P., Bayer P., Rovnaník P., Novák J. Properties of alkali-activated aluminosilicate materials with fire-resistant aggregate after high temperature loading. In: Dhir R.K., Harrison T.A., Newlands M.D., editors. Proceedings of the International Conference Cement Combinations for Durable Concrete; Dundee, UK. 5–7 July 2005; London, UK: Thomas Telford; 2005. pp. 277–286.
Rovnaník P., Dufka A. Effect of the aggregate type on the properties of alkali-activated slag subjected to high temperatures. Mater. Tech. 2015;49:709–713. doi: 10.17222/mit.2014.116. DOI
Zuda L., Bayer P., Rovnaník P., Černý R. Effect of high temperatures on the properties of alkali activated aluminosilicate with electrical porcelain filler. Int. J. Thermophys. 2008;29:693–705. doi: 10.1007/s10765-007-0311-y. DOI
Zuda L., Bayer P., Rovnaník P., Černý R. Mechanical and hydric properties of alkali-activated aluminosilicate composite with electrical porcelain aggregates. Cem. Concr. Comp. 2008;30:266–273. doi: 10.1016/j.cemconcomp.2007.11.003. DOI
Lia C., Sun H., Li L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 2010;40:1341–1349. doi: 10.1016/j.cemconres.2010.03.020. DOI
Antoš P., Burian A. Vodní sklo—Výroba, Struktura, Vlastnosti a Použití. SILCHEM s.r.o.; Ústí n. Labem, Czech Republic: 2002. (In Czech)
EN 196-1:2005—Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization; Brusel, Belgium: 2005.
Matesová D., Bonen D., Shah S.P. Factors affecting the resistance of cementitious materials at high temperatures and medium[0] heating rates. Mater. Struct. 2006;39:919–935. doi: 10.1617/s11527-006-9198-5. DOI
Castillo C., Durrani A.J. Effect of transient high temperature on High-Strength Concrete. ACI Mater. J. 1990;87:47–53.
Zhang Y.J., Li S., Wang Y.C., Xu D.L. Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature. J. Non-Cryst. Sol. 2012;358:620–624. doi: 10.1016/j.jnoncrysol.2011.11.006. DOI
Rovnanik P., Bayer P., Rovnaníková P. Characterization of alkali activated slag paste after exposure to high temperatures. Constr. Build. Mater. 2013;47:1479–1487. doi: 10.1016/j.conbuildmat.2013.06.070. DOI
Jain P.L. Principles of Foundry Technology. 4th revised ed. Tata McGraw-Hill; Noida, India: 2003.
Greenwood J.P., Hess P.C. Congruent melting kinetics of albite. J. Geophys. Res. 1998;103:29815–29828. doi: 10.1029/98JB02300. DOI
Determination of the Thermal Parameters of Geopolymers Modified with Iron Powder