Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate

. 2016 Jun 30 ; 9 (7) : . [epub] 20160630

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28773657

Geopolymers are generally appreciated for their good resistance against high temperatures. This paper compares the influence of thermal treatment with temperatures ranging from 200 to 1200 °C on the mechanical properties and microstructure of geopolymers based on two different aluminosilicate precursors, metakaolin and fly ash. Moreover, the paper is also aimed at characterizing the effect of chamotte aggregate on the performance of geopolymers subjected to high temperatures. Thermal treatment leads to a deterioration in the strength of metakaolin geopolymer, whereas fly ash geopolymer gains strength upon heating. The formation of albite above 900 °C is responsible for the fusion of geopolymer matrix during exposure to 1200 °C, which leads to the deformation of the geopolymer samples. Chamotte aggregate improves the performance of geopolymer material by increasing the thermal stability of geopolymers via sintering of the aggregate particles with the geopolymer matrix in the contact zone.

Zobrazit více v PubMed

Davidovits J. Geopolymer Chemistry & Applications. 3rd ed. Institute Geopolymere; Saint-Quentin, France: 2011.

Duxson P., Fernández-Jiménez A., Provis J.L., Luckey G.C., Palomo A., van Deventer J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007;42:2917–2933. doi: 10.1007/s10853-006-0637-z. DOI

Messina F., Ferone C., Colangelo F., Cioffi R. Low temperature alkaline activation of weathered fly ash: Influence of mineral admixtures on early age performance. Constr. Build. Mater. 2015;86:169–177. doi: 10.1016/j.conbuildmat.2015.02.069. DOI

Hwang C.-L., Huynh T.-P. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr. Build. Mater. 2015;101:1–9. doi: 10.1016/j.conbuildmat.2015.10.025. DOI

Khankhaje E., Hussin M.W., Mirza J., Rafieizonooz M., Salim M.R., Siong H.C., Warid M.N.M. On blended cement and geopolymer concretes containing palm oil fuel ash. Mater. Des. 2016;89:385–398. doi: 10.1016/j.matdes.2015.09.140. DOI

Ferone C., Colangelo F., Messina F., Santoro L., Cioffi R. Recycling of pre-washed municipal solid waste incinerator fly ash in the manufacturing of low temperature setting geopolymer materials. Materials. 2013;6:3420–3437. doi: 10.3390/ma6083420. PubMed DOI PMC

Ye N., Yang J., Liang S., Hu Y., Hu J., Xiao B., Huang Q. Synthesis and strength optimization of one-part geopolymer based on red mud. Constr. Build. Mater. 2016;111:317–325. doi: 10.1016/j.conbuildmat.2016.02.099. DOI

Haddad R.H., Alshbuol O. Production of geopolymer concrete using natural pozzolan: A parametric study. Constr. Build. Mater. 2016;114:699–707. doi: 10.1016/j.conbuildmat.2016.04.011. DOI

Molino B., De Vincenzo A., Ferone C., Messina F., Colangelo F., Cioffi R. Recycling of clay sediments for geopolymer binder production. A new perspective for reservoir management in the framework of Italian legislation: The Occhito reservoir case study. Materials. 2014;7:5603–5616. doi: 10.3390/ma7085603. PubMed DOI PMC

Erdogan S.T. Inexpensive intumescent alkali-activated natural pozzolan pastes. J. Eur. Ceram. Soc. 2015;35:2663–2670. doi: 10.1016/j.jeurceramsoc.2015.03.017. DOI

Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 2005;35:1124–1132. doi: 10.1016/j.cemconres.2004.06.031. DOI

Grutzeck M., Kwan S., DiCola M. Zeolite formation in alkali-activated cementitious systems. Cem. Concr. Res. 2004;34:949–955. doi: 10.1016/j.cemconres.2003.11.003. DOI

Koloušek D., Brus J., Urbanova M., Andertova J., Hulinsky V., Vorel J. Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers. J. Mater. Sci. 2007;42:9267–9275. doi: 10.1007/s10853-007-1910-5. DOI

Brus J., Kobera L., Urbanova M., Koloušek D., Kotek J. Insights into the Structural Transformations of Aluminosilicate Inorganic Polymers: A Comprehensive Solid-State NMR Study. J. Phys. Chem. C. 2012;116:14627–14637. doi: 10.1021/jp300181q. DOI

Lyon R.E., Balaguru P.N., Fooden A., Sorathia U., Davidovits J., Davidovits M. Fire resistant aluminosilicate composites. Fire Mater. 1997;21:67–73. doi: 10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N. DOI

Barbosa V.F.F., Mac Kenzie K.J.D. Synthesis and thermal behaviour of potassium sialate geopolymers. Mater. Lett. 2003;57:1477–1482. doi: 10.1016/S0167-577X(02)01009-1. DOI

Rahier H., Wastials J., Biesemans M., Willem R., Van Assche G., Van Mele B. Reaction mechanism, kinetics and high temperature transformations of geopolymers. J. Mater. Sci. 2007;42:9282–9296. doi: 10.1007/s10853-006-0568-8. DOI

Bakharev T. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concr. Res. 2006;36:1134–1147. doi: 10.1016/j.cemconres.2006.03.022. DOI

Barbosa V.F.F., Mac Kenzie K.J.D. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 2003;38:319–331. doi: 10.1016/S0025-5408(02)01022-X. DOI

Davidivits J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. 1991;37:1633–1656. doi: 10.1007/BF01912193. DOI

Duxson P., Luckey G.C., van Deventer J.S.J. Thermal evolution of metakaolin geopolymers: Part I—Physical evolution. J. Non-Cryst. Solids. 2006;352:5541–5555. doi: 10.1016/j.jnoncrysol.2006.09.019. DOI

Duxson P., Luckey G.C., van Deventer J.S.J. Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J. Mater. Sci. 2007;42:3044–3054. doi: 10.1007/s10853-006-0535-4. DOI

Van Riessen A. Thermo-mechanical and microstructural characterization of sodium-poly(sialate-siloxo) (Na-PSS) geopolymers. J. Mater. Sci. 2007;42:3117–3123.

Rovnaníková P., Bayer P., Rovnaník P., Novák J. Properties of alkali-activated aluminosilicate materials with fire-resistant aggregate after high temperature loading. In: Dhir R.K., Harrison T.A., Newlands M.D., editors. Proceedings of the International Conference Cement Combinations for Durable Concrete; Dundee, UK. 5–7 July 2005; London, UK: Thomas Telford; 2005. pp. 277–286.

Rovnaník P., Dufka A. Effect of the aggregate type on the properties of alkali-activated slag subjected to high temperatures. Mater. Tech. 2015;49:709–713. doi: 10.17222/mit.2014.116. DOI

Zuda L., Bayer P., Rovnaník P., Černý R. Effect of high temperatures on the properties of alkali activated aluminosilicate with electrical porcelain filler. Int. J. Thermophys. 2008;29:693–705. doi: 10.1007/s10765-007-0311-y. DOI

Zuda L., Bayer P., Rovnaník P., Černý R. Mechanical and hydric properties of alkali-activated aluminosilicate composite with electrical porcelain aggregates. Cem. Concr. Comp. 2008;30:266–273. doi: 10.1016/j.cemconcomp.2007.11.003. DOI

Lia C., Sun H., Li L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 2010;40:1341–1349. doi: 10.1016/j.cemconres.2010.03.020. DOI

Antoš P., Burian A. Vodní sklo—Výroba, Struktura, Vlastnosti a Použití. SILCHEM s.r.o.; Ústí n. Labem, Czech Republic: 2002. (In Czech)

EN 196-1:2005—Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization; Brusel, Belgium: 2005.

Matesová D., Bonen D., Shah S.P. Factors affecting the resistance of cementitious materials at high temperatures and medium[0] heating rates. Mater. Struct. 2006;39:919–935. doi: 10.1617/s11527-006-9198-5. DOI

Castillo C., Durrani A.J. Effect of transient high temperature on High-Strength Concrete. ACI Mater. J. 1990;87:47–53.

Zhang Y.J., Li S., Wang Y.C., Xu D.L. Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature. J. Non-Cryst. Sol. 2012;358:620–624. doi: 10.1016/j.jnoncrysol.2011.11.006. DOI

Rovnanik P., Bayer P., Rovnaníková P. Characterization of alkali activated slag paste after exposure to high temperatures. Constr. Build. Mater. 2013;47:1479–1487. doi: 10.1016/j.conbuildmat.2013.06.070. DOI

Jain P.L. Principles of Foundry Technology. 4th revised ed. Tata McGraw-Hill; Noida, India: 2003.

Greenwood J.P., Hess P.C. Congruent melting kinetics of albite. J. Geophys. Res. 1998;103:29815–29828. doi: 10.1029/98JB02300. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace