Determination of the Thermal Parameters of Geopolymers Modified with Iron Powder
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
35631890
PubMed Central
PMC9148025
DOI
10.3390/polym14102009
PII: polym14102009
Knihovny.cz E-resources
- Keywords
- geopolymers, iron powder, micro additives, thermal conductivity, thermal properties,
- Publication type
- Journal Article MeSH
The paper presents the results of research concerning the influence of a metallic micromaterial on the thermal conductivity λ, specific heat Cp, and thermal diffusivity a of modified geopolymers. Iron oxide in the form of powder with an average granulation of 10 μm was used as the geopolymer-modifying material. The research concerned geopolymer composite samples with metakaolin (activated with potassium silicate) and the addition of iron in amounts ranging from 0.5% to 2.5% in relation to the weight of the metakaolin. Additionally, the samples were modified with sand and fireclay in two different amounts-1:1 and 1:1.2 in relation to the metakaolin. The addition of fireclay caused a decrease in the thermal conductivity of the composites by 30% when compared to the samples with the addition of sand. The lowest value of the thermal conductivity coefficient λ was obtained for the geopolymer with metakaolin and fireclay. When the ratio of these components in the composite was 1:1, the value of thermal conductivity was equal to 0.6413 W/(m·K), while in the case of their ratio being 1:1.2, it was equal to 0.6456 W/(m·K). In the samples containing fireclay, no significant influence of the added iron on the values of thermal conductivity was noticed. In the case of the geopolymer with sand, the effect was noticeable, and it was most visible in the samples containing metakaolin and sand in the ratio of 1:1.2. It was noticed that with an increase in the addition of Fe, the thermal conductivity of the composite increased.
See more in PubMed
Davidovits J. Geopolymers: Ceramic-like inorganic polymers. J. Ceram. Sci. Technol. 2017;8:335–350.
Kalaw M.E., Culaba A., Hinode H., Kurniawan W., Gallardo S., Promentilla M.A. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash. Materials. 2016;9:580. doi: 10.3390/ma9070580. PubMed DOI PMC
Hájková P. Kaolinite claystone-based geopolymer materials: Effect of chemical composition and curing conditions. Minerals. 2018;8:444. doi: 10.3390/min8100444. DOI
Prochon P., Zhao Z., Courard L., Piotrowski T., Michel F., Garbacz A. Influence of activators on mechanical properties of modified fly ash based geopolymer mortars. Materials. 2020;13:1033. doi: 10.3390/ma13051033. PubMed DOI PMC
Samantasinghar S., Singh S.P. Effect of synthesis parameters on compressive strength of fly ash-slag blended geopolymer. Constr. Build. Mater. 2018;170:225–234. doi: 10.1016/j.conbuildmat.2018.03.026. DOI
Rocha S., Martin-del-Rio J.J., Alejandre F.J., García-Heras J., Jimenez-Aguilar A. Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+) Constr. Build. Mater. 2018;178:453–461. doi: 10.1016/j.conbuildmat.2018.05.172. DOI
Glukhovsky Y.D., Rostovskaja G.S., Rumyna G.V. High-strength Slag-Alkaline Cements; Proceedings of the 7th International Congress on the Chemistry of Cement, Geophysics and Space Physics; Paris, France. 30 June–4 July 1980; pp. 64–168.
Vohlídal J., Julák A., Štulík K. Chemické a Analytické Tabulky. Grada Publishing; Praha, Czechia: 1999.
Peng X., Shuai Q., Li H., Ding Q., Gu Y., Cheng C., Xu Z. Fabrication and Fireproofing Performance of the Coal Fly Ash-Metakaolin-Based Geopolymer Foams. Materials. 2020;13:1750. doi: 10.3390/ma13071750. PubMed DOI PMC
Davidovits J. Geopolymer Chemistry and Applications. 5th ed. Geopolymer Institute; Saint-Quentin, France: 2020.
Xie J., Zhao J., Wang J., Wang C., Huang P., Fang C. Sulfate resistance of recycled aggregate concrete with GGBS and fly ash-based geopolymer. Materials. 2019;12:1247. doi: 10.3390/ma12081247. PubMed DOI PMC
Yan D., Xie L., Qian X., Ruan S., Zeng Q. Compositional Dependence of Pore Structure, Strengthand Freezing-Thawing Resistance of Metakaolin-Based Geopolymers. Materials. 2020;13:2973. doi: 10.3390/ma13132973. PubMed DOI PMC
Rovnaník P., Šafránková K. Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Materials. 2016;9:535. doi: 10.3390/ma9070535. PubMed DOI PMC
Punurai W., Kroehong W., Saptamongkol A., Chindaprasirt P. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste. Constr. Build. Materi. 2018;186:62–70. doi: 10.1016/j.conbuildmat.2018.07.115. DOI
Alsalman A., Assi L.N., Kareem R.S., Carter K., Ziehl P. Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete. Clean. Environ. Syst. 2021;3:100047. doi: 10.1016/j.cesys.2021.100047. DOI
Novais R.M., Pullar R.C., Labrincha J.A. Geopolymer foams: An overview of recent advancements. Prog. Mater. Sci. 2020;109:100621. doi: 10.1016/j.pmatsci.2019.100621. DOI
Arnoult M., Perronnet M., Autef A., Nait-Ali B., Rossignol S. Understanding the Formation of Geopolymer Foams: Influence of the Additives. Ceram. Mod. Technol. 2019;1:163–172. doi: 10.29272/cmt.2019.0006. DOI
Łach M., Pławecka K., Bąk A., Lichocka K., Korniejenko K., Cheng A., Lin W.-T. Determination of the Influence of Hydraulic Additives on the Foaming Process and Stability of the Produced Geopolymer Foams. Materials. 2021;14:5090. doi: 10.3390/ma14175090. PubMed DOI PMC
Van Su L., Louda P., Tran H.N., Nguyen P.D., Bakalova T., Buczkowska K.E., Dufkova I. Study on Temperature-Dependent Properties and Fire Resistance of Metakaolin-Based Geopolymer Foams. Polymers. 2020;12:2994. doi: 10.3390/polym12122994. PubMed DOI PMC
Łach M., Korniejenko K., Mikuła J. Thermal Insulation and Thermally Resistant Materials Made of Geopolymer Foams. Procedia Eng. 2016;151:410–416. doi: 10.1016/j.proeng.2016.07.350. DOI
Van Su L. Thermal Conductivity of Reinforced Geopolymer Foams. Ceram. Silik. 2019;63:1–9.
Kamseu E., Kaze C.R., Fekoua J.N.N., Melo U.C., Rossignol S., Leonelli C. Ferrisilicates formation during the geopolymerization of natural Fe-rich aluminosilicate precursors. Mater. Chem. Phys. 2020;240:122062. doi: 10.1016/j.matchemphys.2019.122062. DOI
Poudeu R.C., Ekani C.J., Djangang C.N., Blanchart P. Role of heat-treated laterite on the strengthening of geopolymer designed with laterite as solid precursor. Ann. Chim. Sci. Des. Mater. 2019;43:359–367. doi: 10.18280/acsm.430601. DOI
Kaze C.R.P., Venyite P., Nana A., Juvenal D.N., Tchakoute H.K., Rahier H., Kamseu E., Melo U.C., Leonelli C. Meta-halloysite to improve compactness in iron-rich laterite-based alkali activated materials. Mater. Chem. Phys. 2020;239:122268. doi: 10.1016/j.matchemphys.2019.122268. DOI
Davidovits J., Davidovits R. Ferro-Sialate Geopolymers (-Fe-O-Si-O-Al-O-); Technical papers #27; Geopolymer Institute Library, Saint-Quentin, France, 2020. [(accessed on 15 March 2022)]. Available online: https://www.geopolymer.org/library/technical-papers/ DOI
Assi L., Ghahari S., Deaver E.E., Leaphart D., Ziehl P. Improvement of the early and final compressive strength of fly ash-based geopolymer concrete at ambient conditions. Constr. Build. Mater. 2016;123:806–813. doi: 10.1016/j.conbuildmat.2016.07.069. DOI
Prałat K., Ciemnicka J., Grabowski M., Jaskulski R., Kubissa W. Application of experimental setup for the thermal conductivity measurement of building materials using the “hot wire” method. Sci. Rev. Eng. Environ. Sci. 2019;28:153–160. doi: 10.22630/PNIKS.2019.28.1.14. DOI
Franco A. An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method. Appl. Therm. Eng. 2007;27:2495–2504. doi: 10.1016/j.applthermaleng.2007.02.008. DOI
Strzałkowski J., Garbalińska H. Thermal and strength properties of lightweight concretes with the addition of aerogel particles. Adv. Cem. Res. 2016;28:567–575. doi: 10.1680/jadcr.16.00032. DOI
Prałat K., Ciemnicka J., Koper A., Buczkowska K., Łoś P. Comparison of the Thermal Properties of Geopolymer and Modified Gypsum. Polymers. 2021;13:1220. doi: 10.3390/polym13081220. PubMed DOI PMC
Prałat K., Kubissa W., Jaskulski R., Pilarczyk S. Wpływ wybranych mikrododatków na przewodnictwo cieplne oraz mikrostrukturę powierzchni modyfikowanych gipsów (Influence of selected micro-additives on thermal conductivity and microstructure of modified gypsum) Acta Sci. Pol. Archit. 2019;18:69–75. doi: 10.22630/ASPA.2019.18.1.8. (In Polish) DOI
Liu M.Y.J., Alengaram U.J., Jumaat M.Z., Mo K.H. Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy Build. 2014;72:238–245. doi: 10.1016/j.enbuild.2013.12.029. DOI
Utami F.A.R., Triwiyono A., Agustini N.K.A., Perdana I. IOP Conference Series: Materials Science and Engineering, Bandung, Indonesia, 28–29 November 2019. Volume 742. IOP Publishing Ltd.; Bristol, UK: 2020. Thermal conductivity of geopolymer with polypropylene fiber; p. 012031. DOI
Huang Y., Gong L., Pan Y., Li C., Zhou T., Cheng X. Facile construction of the aerogel/geopolymer composite with ultra-low thermal conductivity and high mechanical performance. RSC Adv. 2018;8:2350–2356. doi: 10.1039/C7RA12041A. PubMed DOI PMC
Nongnuang T., Jitsangiam P., Rattanasak U., Tangchirapat W., Suwan T., Thongmunee S. Characteristics of Waste Iron Powder as a Fine Filler in a High-Calcium Fly Ash Geopolymer. Materials. 2021;14:2515. doi: 10.3390/ma14102515. PubMed DOI PMC
Nath S.K., Kumar S. Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr. Build. Mater. 2013;38:924–930. doi: 10.1016/j.conbuildmat.2012.09.070. DOI
Nkwaju R.Y., Djobo J., Nouping J., Huisken P.W.M., Deutou J., Courard L. Iron-rich laterite-bagasse fibers based geopolymer composite: Mechanical, durability and insulating properties. Appl. Clay Sci. 2019;183:105333. doi: 10.1016/j.clay.2019.105333. DOI