Comparison of the Thermal Properties of Geopolymer and Modified Gypsum

. 2021 Apr 09 ; 13 (8) : . [epub] 20210409

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33918819

The paper presents the results of research concerning the influence of micromaterials on the heat conductivity coefficient λ, specifically heat Cp and thermal diffusivity a of modified gypsum and geopolymer. Microspheres, hydroxyethyl methylcellulose (HEMC) polymer, and aerogel were used as the gypsum's modifying materials. The study also investigated an alkali potassium-activated methakaolin-based geopolymer with the addition of aluminium dust. During the measurements of thermal parameters, the nonstationary method was chosen, and an Isomet device-which recorded the required physical quantities-was used. When compared to the reference sample, a decrease in the thermal conductivity and diffusivity of the hardened gypsum- and a simultaneous increase in specific heat-was observed with the addition of micromaterials. The geopolymer sample was characterized by the lowest value of thermal conductivity, equal to 0.1141 W/(m·K). It was over 62% lower than the reference sample containing only gypsum. The experimental values of the thermal conductivity of the gypsum samples with the addition of HEMC, aerogel and microspheres were, respectively, over 23%, 6%, and 8% lower than those of the unmodified gypsum samples. The lowest values of thermal conductivity were observed in the case of the gypsum samples modified with polymer; this resulted from the fact that the polymer caused the greatest change in the structure of the gypsum's composite, which were expressed by the lowest density and highest porosity.

Zobrazit více v PubMed

Pichniarczyk P., Niziurska M., Nosal K. The Influence of Methylcellulose Viscosity on Properties of Gypsum Plaster Mortars. Mater. Ceram. 2012;64:558–562. (In Polish)

Gruszczyński M. Estimation of shrinkage strains of cement mortars and concrete with polymer addition. Cement Wapno. Beton. 2007;12/74:139–144.

Kamseu E., Bignozzi M.C., Melo U., Leonelli C., Sglavo V.M. Design of inorganic polymer cements: Effects of matrix strengthening on microstructure. Constr. Build. Mater. 2013;38:1135–1145. doi: 10.1016/j.conbuildmat.2012.09.033. DOI

Kamseu E., Nait-Ali B., Bignozzi M., Leonelli C., Rossignol S., Smith D. Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J. Eur. Ceram. Soc. 2012;32:1593–1603. doi: 10.1016/j.jeurceramsoc.2011.12.030. DOI

Heim D., Mrowiec A., Pralat K., Mucha M. Influence of Tylose MH1000 Content on Gypsum Thermal Conductivity. J. Mater. Civ. Eng. 2018;30:04018002. doi: 10.1061/(ASCE)MT.1943-5533.0002177. DOI

Pichniarczyk P., Niziurska M., Nosal K., Wieczorek M. Influence of methylcellulose on a microstructure of gypsum and cementitious mortars. Szkło Ceram. 2012;63:12–17. (In Polish)

Najduchowska M., Pichniarczyk P. Effect of hydrophobic agents on the properties of cement and gypsum mortars. Cement Wapno. Beton. 2010;15/77:141–148.

Ceske lupkove zavody BAUCIS LK. [(accessed on 8 April 2021)]; Available online: www.cluz.cz/en/baucis-lk.

Aluminium Powder. [(accessed on 8 April 2021)]; Available online: www.kovyachemie.cz/kontakty/

Jaya N.A., Yun-Ming L., Cheng-Yong H., Abdullah M.M.A.B., Hussin K. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Constr. Build. Mater. 2020;247:118641. doi: 10.1016/j.conbuildmat.2020.118641. DOI

Khalil A., Tawfik A., Hegazy A., El-Shahat M. Effect of some waste additives on the physical and mechanical properties of gypsum plaster composites. Constr. Build. Mater. 2014;68:580–586. doi: 10.1016/j.conbuildmat.2014.06.081. DOI

Tesárek P., Drchalova J., Kolísko J., Rovnaníková P., Černý R. Flue gas desulfurization gypsum: Study of basic mechanical, hydric and thermal properties. Constr. Build. Mater. 2007;21:1500–1509. doi: 10.1016/j.conbuildmat.2006.05.009. DOI

Gutiérrez-González S., Gadea J., Rodríguez A., Blanco-Varela M., Calderón V. Compatibility between gypsum and polyamide powder waste to produce lightweight plaster with enhanced thermal properties. Constr. Build. Mater. 2012;34:179–185. doi: 10.1016/j.conbuildmat.2012.02.061. DOI

Bulichen D., Plank J. Water retention capacity and working mechanism of methyl hydroxypropyl cellulose (MHPC) in gypsum plaster—Which impact has sulfate? Cem. Concr. Res. 2013;46:66–72. doi: 10.1016/j.cemconres.2013.01.014. DOI

Kocemba A. Water retention and setting in gypsum/polymers composites Zatrzymanie wody i zestalanie w kompozytach gips/polimer. Przemysł Chem. 2016;1:129–131. doi: 10.15199/62.2016.5.22. DOI

Sikora K.S., Klemm A.J. Effect of Superabsorbent Polymers on Workability and Hydration Process in Fly Ash Cementitious Composites. J. Mater. Civ. Eng. 2015;27:04014170. doi: 10.1061/(ASCE)MT.1943-5533.0001122. DOI

Strzałkowski J., Garbalińska H. Thermal and strength properties of lightweight concretes with the addition of aerogel particles. Adv. Cem. Res. 2016;28:1–9. doi: 10.1680/jadcr.16.00032. DOI

Prałat K., Jaskulski R., Ciemnicka J., Makomaski G. Analysis of the thermal properties and structure of gypsum modified with cellulose based polymer and aerogels. Arch. Civ. Eng. 2020;66:153–168. doi: 10.24425/ace.2020.135214. DOI

Schiavoni S., D’alessandro F., Bianchi F., Asdrubali F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016;62:988–1011. doi: 10.1016/j.rser.2016.05.045. DOI

Kubissa W., Pacewska B., Wilińska I. Comparative Investigations of some Properties Related to Durability of Cement Concretes Containing Different Fly Ashes. Adv. Mater. Res. 2014;1054:154–161. doi: 10.4028/www.scientific.net/AMR.1054.154. DOI

Woyciechowski P., Woliński P., Adamczewski G. Prediction of Carbonation Progress in Concrete Containing Calcareous Fly Ash Co-Binder. Materials. 2019;12:2665. doi: 10.3390/ma12172665. PubMed DOI PMC

Wang X., Yuan J., Wei P., Zhu M. Effects of fly ash microspheres on sulfate erosion resistance and chlorion penetration resistance in concrete. J. Therm. Anal. Calorim. 2019;139:3395–3403. doi: 10.1007/s10973-019-08705-8. DOI

Inozemtcev A.S., Sergeevich A., Korolev E.V., Smirnov V.A. Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high-strength lightweight concrete. Struct. Concr. 2017;18:67–74. doi: 10.1002/suco.201500048. DOI

Ciemnicka J., Jaskulski R., Kubissa W., Prałat K. Influence of Selected Micro Additives Content nn Thermal Properties of Gypsum. Arch. Civ. Eng. Environ. 2019;12:69–79. doi: 10.21307/acee-2019-037. DOI

Prałat K., Grabowski M., Ciemnicka J. Practical Aspects of Chemical Engineering. Volume 10. Springer; Berlin/Heidelberg, Germany: 2020. The Use of Micro Additives in Building Gypsum Materials; pp. 336–345.

Ghosh A., Subbarao C. Microstructural Development in Fly Ash Modified with Lime and Gypsum. J. Mater. Civ. Eng. 2001;13:65–70. doi: 10.1061/(ASCE)0899-1561(2001)13:1(65). DOI

Sivapullaiah P.V., Moghal A.A.B. Role of Gypsum in the Strength Development of Fly Ashes with Lime. J. Mater. Civ. Eng. 2011;23:197–206. doi: 10.1061/(ASCE)MT.1943-5533.0000158. DOI

Kusnerova M., Valicek J., Harnicarova M., Hryniewicz T., Rokosz K., Palková Z., Vaclavik V., Řepka M., Bendova M. A Proposal for Simplifying the Method of Evaluation of Uncertainties in Measurement Results. Meas. Sci. Rev. 2013;13:1–6. doi: 10.2478/msr-2013-0007. DOI

Prałat K., Kubissa W., Jaskulski R., Kubissa W., Pilarczyk S. Wpływ wybranych mikrododatków na przewodnictwo cieplne oraz mikrostrukturę powierzchni modyfikowanych gipsów (Influence of selected micro-additives on thermal conductivity and microstructure of modified gypsum) Acta Sci. Pol. Archit. 2019;18:69–75. (In Polish)

Kamseu E., Ngouloure Z.N., Ali B.N., Zekeng S., Melo U., Rossignol S., Leonelli C. Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity. Energy Build. 2015;88:45–56. doi: 10.1016/j.enbuild.2014.11.066. DOI

Skvara F., Šulc R., Tišler Z., Skricik P., Šmilauer V., Zlámalová Cílová Z. Preparation and properties of fly ash-based geo-polymer foams. Ceram. Silikáty. 2014;58:188–197.

He R., Dai N., Wang Z. Thermal and Mechanical Properties of Geopolymers Exposed to High Temperature: A Literature Review. Adv. Civ. Eng. 2020;2020:1–17. doi: 10.1155/2020/7532703. DOI

Krakowiak K.J., Nannapaneni R.G., Moshiri A., Phatak T., Stefaniuk D., Sadowski L., Qomi M.J.A. Engineering of high specific strength and low thermal conductivity cementitious composites with hollow glass microspheres for high-temperature high-pressure applications. Cem. Concr. Compos. 2020;108:103514. doi: 10.1016/j.cemconcomp.2020.103514. DOI

Pogorzelski J. Ostrożnie z niestacjonarnymi badaniami przewodności cieplnej! (Careful with non-stationary thermal conduc-tivity tests!) Prace Instytutu Techniki Budowlanej. 2000;29:38–52. (In Polish)

Jittabut P. Effect of Nanosilica on Mechanical and Thermal Properties of Cement Composites for Thermal Energy Storage Materials. Energy Procedia. 2015;79:10–17. doi: 10.1016/j.egypro.2015.11.454. DOI

Vimmrová A., Keppert M., Svoboda L., Černý R. Lightweight gypsum composites: Design strategies for multi-functionality. Cem. Concr. Compos. 2011;33:84–89. doi: 10.1016/j.cemconcomp.2010.09.011. DOI

Yu Q., Brouwers H.J.H. Thermal properties and microstructure of gypsum board and its dehydration products: A theoretical and experimental investigation. Fire Mater. 2011;36:575–589. doi: 10.1002/fam.1117. DOI

Pedreño-Rojas M.A., Morales-Conde M.J., Pérez-Gálvez F., Rubio-De-Hita P. Reuse of CD and DVD Wastes as Reinforcement in Gypsum Plaster Plates. Materials. 2020;13:989. doi: 10.3390/ma13040989. PubMed DOI PMC

Pavlík Z., Vejmelková E., Fiala L., Černý R. Effect of Moisture on Thermal Conductivity of Lime-Based Composites. Int. J. Thermophys. 2009;30:1999–2014. doi: 10.1007/s10765-009-0650-y. DOI

Šefflová M., Volf M., Pavlů T. Thermal Properties of Concrete with Recycled Aggregate. Adv. Mater. Res. 2014;1054:227–233. doi: 10.4028/www.scientific.net/AMR.1054.227. DOI

Vejmelková E., Koňáková D., Kulovaná T., Hubáček A., Cerny R. Mechanical and Thermal Properties of Moderate-Strength Concrete with Ceramic Powder Used as Supplementary Cementitious Material. Adv. Mater. Res. 2014;1054:194–198. doi: 10.4028/www.scientific.net/AMR.1054.194. DOI

Ben Mansour M., Soukaina C.A., Benhamou B., Ben Jabrallah S. Thermal Characterization of a Tunisian Gypsum Plaster as Construction Material. Energy Procedia. 2013;42:680–688. doi: 10.1016/j.egypro.2013.11.070. DOI

Rahmanian I., Wang Y. A combined experimental and numerical method for extracting temperature-dependent thermal conductivity of gypsum boards. Constr. Build. Mater. 2012;26:707–722. doi: 10.1016/j.conbuildmat.2011.06.078. DOI

Thong N.V., Hung T. Research on the parameters influencing the thermal conductivity of gypsum plasterboard under fire conditions. Cogent Eng. 2019;6:1569796. doi: 10.1080/23311916.2019.1569796. DOI

Ashour T., Korjenic A., Korjenic S., Wu W. Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum. Energy Build. 2015;104:139–146. doi: 10.1016/j.enbuild.2015.07.016. DOI

Maciej J., Shady A. Thermal conductivity of gypsum with incorporated phase change material (PCM) for building applications. J. Power Technol. 2011;91:49–53.

Le V.S. Thermal conductivity of reinforced geopolymer foams. Ceram. Silik. 2019;63:365–373. doi: 10.13168/cs.2019.0032. DOI

Rickard W.D., Vickers L., Van Riessen A. Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions. Appl. Clay Sci. 2013;73:71–77. doi: 10.1016/j.clay.2012.10.006. DOI

Xiao B., Wang S., Wang Y., Jiang G., Zhang Y., Chen H., Liang M., Long G., Chen X. Effective thermal conductivity of porous media with roughened surfaces by fractal-monte carlo simulations. Fractals. 2020;28:205002. doi: 10.1142/S0218348X20500292. DOI

Kou J., Liu Y., Wu F., Fan J., Lu H., Xu Y. Fractal analysis of effective thermal conductivity for three-phase (unsaturated) porous media. J. Appl. Phys. 2009;106:054905. doi: 10.1063/1.3204479. DOI

Wang Y., Ma C., Liu Y., Wang D., Liu J. A model for the effective thermal conductivity of moist porous building materials based on fractal theory. Int. J. Heat Mass Transf. 2018;125:387–399. doi: 10.1016/j.ijheatmasstransfer.2018.04.063. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...