Changes in the Strength Properties and Phase Transition of Gypsum Modified with Microspheres, Aerogel and HEMC Polymer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34201503
PubMed Central
PMC8269550
DOI
10.3390/ma14133486
PII: ma14133486
Knihovny.cz E-zdroje
- Klíčová slova
- DSC, HEMC, aerogel, ecological materials, gypsum, microspheres, strength,
- Publikační typ
- časopisecké články MeSH
The paper presents an assessment of the impact of using additives on the strength of a binding material, i.e., building gypsum, and also the phase transformation that takes place in it. Microspheres, aerogel and polymer (HEMC) additives were added to a building gypsum slurry with a water to gypsum ratio of 0.75. In order to investigate their influence on bending strength, compressive strength, and the effect of high temperatures, differential scanning calorimetry (DSC), as well as tests of the multicomponent binder, were carried out in accordance with the applicable PN-EN 13279-2:2005 standard. The obtained test results allowed to determine that the used additives influenced the strength parameters of the obtained composites. It was shown that the applied additives decreased the compressive and bending strength of the modified gypsum. Despite these properties, the obtained gypsum materials are environmentally friendly because they reuse wastes, such as microspheres. Out of all the applied additives, the use of microspheres in an amount of 10% caused a decrease in the bending strength by only 10%, and an increase in the compressive strength by 4%.
Zobrazit více v PubMed
Ng S., Jelle B.P., Sandberg L.I., Gao T., Wallevik O.H. Experimental investigations of aerogel-incorporated ultra-high performance concrete. Constr. Build. Mater. 2015;77:307–316. doi: 10.1016/j.conbuildmat.2014.12.064. DOI
Gao T., Jelle B.P., Gustavsen A., Jacobsen S. Aerogel-incorporated concrete: An experimental study. Constr. Build. Mater. 2014;52:130–136. doi: 10.1016/j.conbuildmat.2013.10.100. DOI
Dobaczewska W., Kubissa W., Prałat K., Tomczak P. Influence of activation of microsphere and latex base addition on mechanical properties of concrete. In: Juozapaitis A., Daniunas A., Juknevicius L., editors. Proceedings of the 13th International Conference MBMST; Vilnius, Lithuania. 16–17 May 2019; pp. 40–46.
Jaskulski R., Kubissa W. Transient method measured thermal properties of concrete with microspheres and latex based addition. MATEC Web Conf. 2018;196:04037. doi: 10.1051/matecconf/201819604037. DOI
Prałat K., Jaskulski R., Ciemnicka J., Makomaski G. Analysis of the thermal properties and structure of gypsum modified with cellulose based polymer and aerogels. Arch. Civ. Eng. 2020;66 doi: 10.24425/ace.2020.135214. DOI
Ciemnicka J., Jaskulski R., Kubissa W., Pralat K. Influence of selected micro additives content on thermal properties of gypsum. Arch. Civ. Eng. Environ. 2019;12:69–79. doi: 10.21307/ACEE-2019-037. DOI
Heim D., Mrowiec A., Pralat K., Mucha M. Influence of Tylose MH1000 Content on Gypsum Thermal Conductivity. J. Mater. Civ. Eng. 2018;30:04018002. doi: 10.1061/(ASCE)MT.1943-5533.0002177. DOI
Mróz P., Mucha M. Hydroxyethyl methyl cellulose as a modifier of gypsum properties. J. Therm. Anal. Calorim. 2018;134:1083–1089. doi: 10.1007/s10973-018-7238-3. DOI
Czaderna A., Kocemba A., Kozanecki M., Mucha M., Mróz P. The influence of cellulose derivatives on water structure in gypsum. Constr. Build. Mater. 2018;160:628–638. doi: 10.1016/j.conbuildmat.2017.11.062. DOI
Baetens R., Jelle B.P., Gustavsen A. Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 2011;43:761–769. doi: 10.1016/j.enbuild.2010.12.012. DOI
Li D., Zhang C., Li Q., Liu C., Arıcı M., Wu Y. Thermal performance evaluation of glass window combining silica aerogels and phase change materials for cold climate of China. Appl. Therm. Eng. 2020;165:114547. doi: 10.1016/j.applthermaleng.2019.114547. DOI
Li P., Wu H., Liu Y., Yang J., Fang Z., Lin B. Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Constr. Build. Mater. 2019;205:529–542. doi: 10.1016/j.conbuildmat.2019.01.212. DOI
Jaworski M., Abeid S. Thermal conductivity of gypsum containig phase change material (PCM) for builiding applications. J. Power Technol. 2011;91:49–53.
Cherki A.-B., Remy B., Khabbazi A., Jannot Y., Baillis D. Experimental thermal properties characterization of insulating cork–gypsum composite. Constr. Build. Mater. 2014;54:202–209. doi: 10.1016/j.conbuildmat.2013.12.076. DOI
Correia C.D.M.P., De Souza M.F. Mechanical strength and thermal conductivity of low-porosity gypsum plates. Mater. Res. 2009;12:95–99. doi: 10.1590/S1516-14392009000100012. DOI
Rahmanian I., Wang Y. A combined experimental and numerical method for extracting temperature-dependent thermal conductivity of gypsum boards. Constr. Build. Mater. 2012;26:707–722. doi: 10.1016/j.conbuildmat.2011.06.078. DOI
Product Card. [(accessed on 12 May 2020)]; Available online: https://baza.atlas.com.pl/pliki/pl_5468_20190607_135610.pdf.
Koper A., Prałat K., Ciemnicka J., Buczkowska K. Influence of the Calcination Temperature of Synthetic Gypsum on the Particle Size Distribution and Setting Time of Modified Building Materials. Energies. 2020;13:5759. doi: 10.3390/en13215759. DOI
Haustein E., Quant B. Charakterystyka wybranych właściwości mikrosfer-frakcji popiołu lotnego-ubocznego produktu spalania węgla kamiennego. Gospod. Surowcami Miner. 2011;27:95–111.
Łach M., Mikuła J. Badania i możliwości zastosowań mikrosfer z popiołów lotnych. Tech. Issues. 2016;3:74–78.
Krishnaiah M.V. Thermal Conductivity measurement Techniques; Proceedings of the 16th National Symposium and Workshop on Thermal Analysis; Kalpakkam, India. 7–8 February 2008; pp. 85–95. (In Polish)
Matsunaga T., Kim J., Hardcastle S., Rohatgi P. Crystallinity and selected properties of fly ash particles. Mater. Sci. Eng. A. 2002;325:333–343. doi: 10.1016/S0921-5093(01)01466-6. DOI
Matyszewski T., Bania A., Mickiewicz D. Właściwości betonów piaskowych z dodatkiem mikrosfer. Cem. Wapno Gips. 1986;2–3:53–55. (In Polish)
Matyszewski T., Łosiewicz M., Łopacińska B. Zastosowanie Mikrosfer Jako Wypełniacza do Betonów Izolacyjnych. PWN; Warsaw, Polish: 1979. (In Polish)
Ji H., Song X., Shi Z.-Q., Tang C., Xiong L., Zhao W., Zhao C. Reinforced-Concrete Structured Hydrogel Microspheres with Ultrahigh Mechanical Strength, Restricted Water Uptake, and Superior Adsorption Capacity. ACS Sustain. Chem. Eng. 2018;6:5950–5958. doi: 10.1021/acssuschemeng.7b04323. DOI
Pichór W. Kierunki wykorzystania w budownictwie mikrosfer powstających jako uboczny produkt spalania węgla kamiennego. Mater. Ceram. 2005;57:160–165. (In Polish)
Pichór W., Janiec A. Thermal stability of expanded perlite modified by mullite. Ceram. Int. 2009;35:527–530. doi: 10.1016/j.ceramint.2007.10.008. DOI
Prałat K., Ciemnicka J. Badanie Korelacji Właściwości Termicznych i Wytrzymałościowych Kompozytów Gipsowych Modyfikowanych Mikrosferami. Builder Sci. Warsaw. 2020;275:24–25. doi: 10.5604/01.300. (In Polish) DOI
Lei Y., Hu Z., Cao B., Chen X., Song H. Enhancements of thermal insulation and mechanical property of silica aerogel monoliths by mixing graphene oxide. Mater. Chem. Phys. 2017;187:183–190. doi: 10.1016/j.matchemphys.2016.11.064. DOI
Adamczyk-Królak I. Aerożele i pianki poliuretanowe–nowoczesne materiały termoizolacyjne w budownictwie. Bud. Zoptymalizowanym Potencjale Energetycznym. 2015;2:16. (In Polish)
Product Card. [(accessed on 12 December 2020)]; Available online: http://www.buyaerogel.com/product/lumira-aerogel-particles/
Pourchez J., Peschard A., Grosseau P., Guyonnet R., Guilhot B., Vallée F. HPMC and HEMC influence on cement hydration. Cem. Concr. Res. 2006;36:288–294. doi: 10.1016/j.cemconres.2005.08.003. DOI
Szymański Ł., Grabowska B., Kaczmarska K., Kurleto Ż. Celuloza i jej pochodne–zastosowanie w przemyśle. Arch. Foundry Eng. 2015;15:129–132. (In Polish)
Yoo Y.J., Um I.C. Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology. Korea-Aust. Rheol. J. 2013;25:67–75. doi: 10.1007/s13367-013-0007-8. DOI
Product Card. [(accessed on 1 May 2021)]; Available online: https://www.roda.de/en/products/daylight-technology/lumira-aerogel.
Zhang G., Zhao J., Wang P., Xu L. Effect of HEMC on the early hydration of Portland cement highlighted by isothermal calorimetry. J. Therm. Anal. Calorim. 2015;119:1833–1843. doi: 10.1007/s10973-014-4346-6. DOI
Khalil H.A., Davoudpour Y., Islam N., Mustapha A., Sudesh K., Dungani R., Jawaid M. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydr. Polym. 2014;99:649–665. doi: 10.1016/j.carbpol.2013.08.069. PubMed DOI
Menczel J.D., Judovits L., Prime R.B., Bair H.E., Reading M., Swier S. Differential scanning calorimetry (DSC). Thermal analysis of polymers. Fundam. Appl. 2009;7–239 doi: 10.1002/9780470423837. DOI
Zielenkiewicz W. Pomiary Efektów Cieplnych. Warszawska drukarnia naukowa PAN; Warszawa, Poland: 2000. (In Polish)
Kowalska D. Różnicowa kalorymetria skaningowa DSC, ciśnieniowa różnicowa kalorymetria skaningowa PDSC, StepScan DSC, temperaturowo modulowana DSC szybka i super szybka DSC w badaniu żywności. Apar. Badaw. Dydakt. 2017;22:128–138. (In Polish)
Ksionek D., Rosiński M. Badania eksperymentalne niektórych parametrów termodynamicznych materiałów magazynujących ciepło PCM za pomocą różnicowej kalorymetrii skaningowej DSC. Ciepłownictwo Ogrzewnictwo Went. 2014;45:345–346. (In Polish)
Pielichowski K., Flejtuch K. Zastosowanie modulowanej różnicowej kalorymetrii skaningowej (MDSC) w badaniach właściwości polimerów. Polimery. 2002;47:784–792. doi: 10.14314/polimery.2002.784. (In Polish) DOI
Yamada T., Suzuki K., Sato K. Influences of additives specially Na-citrate upon the strength of set gypsum. Gypsum Lime. 1976;144:2–9.
Murat M., Jeandot G. Apport de la microscopie electronique a balayage pour l’etude des platres durcis; Etude de l’influence de quelques modificateurs de prise. Matériaux Constr. 1973;6:129–135. doi: 10.1007/BF02475145. DOI
Serna Jara L.M., Pastor Pérez J.J., Flores Yepes J.A. Wpływ dodatku grafenu na wytrzymałość zaczynu gipsowego. Cem. Wapno Beton. 2020;25 doi: 10.32047/CWB.2020.25.3.6. DOI
Wydra M., Dolny P., Sadowski G., Fangrat J. Flexural Behaviour of Cementitious Mortars with the Addition of Basalt Fibres. Materials. 2021;14:1334. doi: 10.3390/ma14061334. PubMed DOI PMC
Lou W., Guan B., Wu Z. Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis. J. Therm. Anal. Calorim. 2011;104:661–669. doi: 10.1007/s10973-010-1100-6. DOI
López-Beceiro J., Gracia-Fernández C., Tarrío-Saavedra J., Gómez-Barreiro S., Artiaga R. Study of gypsum by PDSC. J. Therm. Anal. Calorim. 2012;109:1177–1183. doi: 10.1007/s10973-012-2335-1. DOI
Wakili K.G., Hugi E., Wullschleger L., Frank T. Gypsum Board in Fire—Modeling and Experimental Validation. J. Fire Sci. 2007;25:267–282. doi: 10.1177/0734904107072883. DOI
Chandara C., Azizli K.A.M., Ahmad Z.A., Sakai E. Use of waste gypsum to replace natural gypsum as set retarders in portland cement. Waste Manag. 2009;29:1675–1679. doi: 10.1016/j.wasman.2008.11.014. PubMed DOI
Doleželová M., Scheinherrová L., Krejsová J., Vimmrová A. Effect of high temperatures on gypsum-based composites. Constr. Build. Mater. 2018;168:82–90. doi: 10.1016/j.conbuildmat.2018.02.101. DOI
Shahidan S., Aminuddin E., Noor K.M., Hannan N.I.R.R., Bahari N.A.S. Potential of Hollow Glass Microsphere as Cement Replacement for Lightweight Foam Concrete on Thermal Insulation Performance. MATEC Web Conf. 2017;103:1014. doi: 10.1051/matecconf/201710301014. DOI
Inozemtcev A.S., Sergeevich A., Korolev E.V., Smirnov V.A. Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high-strength lightweight concrete. Struct. Concr. 2017;18:67–74. doi: 10.1002/suco.201500048. DOI
Chen J.J., Ng P.L., Li L.G., Kwan A.K.H. Production of high-performance concrete by addition of fly ash micro-sphere and condensed silica fume. Procedia Eng. 2017;172:165–171. doi: 10.1016/j.proeng.2017.02.045. DOI
Prałat K., Ciemnicka J., Koper A., Buczkowska K., Łoś P. Comparison of the Thermal Properties of Geopolymer and Modified Gypsum. Polymers. 2021;13:1220. doi: 10.3390/polym13081220. PubMed DOI PMC