Manganese: From Soil to Human Health-A Comprehensive Overview of Its Biological and Environmental Significance

. 2024 Oct 11 ; 16 (20) : . [epub] 20241011

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39458451

Grantová podpora
SV24-8-21140 CZU in Prague

Background: Manganese is an essential micronutrient that plays a pivotal role in environmental systems, plant physiology, and human health. This review comprehensively examines the manganese cycle in the environment, its absorption and transport mechanisms in plants, and the implications of manganese exposure to human health. Objectives: The objectives of this review are to (i) analyze the environmental cycling of manganese and its bioavailability, (ii) evaluate the role of manganese in plant metabolism and disease resistance, and (iii) assess the impact of manganese toxicity and deficiency on human health. Conclusion: This review highlights that while manganese is crucial for photosynthesis, enzyme activation, and resistance to plant diseases, both its deficiency and toxicity can have severe consequences. In plants, manganese deficiency can lead to impaired growth and reduced crop yields, while toxicity, particularly in acidic soils, can inhibit photosynthesis and stunt development. In humans, manganese is necessary for various physiological processes, but overexposure, especially in occupational settings, can result in neurodegenerative conditions such as manganism. The conclusion emphasizes the importance of managing manganese levels in agriculture and industry to optimize its benefits while minimizing health risks. A multidisciplinary approach is advocated to enhance agricultural productivity and ensure public health safety.

Zobrazit více v PubMed

Yokel R.A. Manganese flux across the blood–brain barrier. NeuroMolecular Med. 2009;11:297–310. doi: 10.1007/s12017-009-8101-2. PubMed DOI

Dey S., Tripathy B., Kumar M.S., Das A.P. Ecotoxicological consequences of manganese mining pollutants and their biological remediation. Environ. Chem. Ecotoxicol. 2023;5:55–61. doi: 10.1016/j.enceco.2023.01.001. DOI

Graham R.D., Webb M.J. Micronutrients and disease resistance and tolerance in plants. Micronutr. Agric. 2018;4:329–370. doi: 10.2136/sssabookser4.2ed.c10. DOI

Huber D.M., Graham R.D. The role of nutrition in crop resistance and tolerance to disease. In: Rengel Z., editor. Mineral Nutrition of Crops: Fundamental Mechanisms and Implications. Food Products Press; New York, NY, USA: 1999. pp. 205–226.

Heckman J.R., Clarke B.B., Murphy J.A. Optimizing manganese fertilization for the suppression of take-all patch disease on creeping bentgrass. Crop. Sci. 2003;43:1395–1398. doi: 10.2135/cropsci2003.1395. DOI

Eskandari S., Sharifnabi B. Foliar spray time affects the efficacy of applied manganese on enhancing cucumber resistance to Podosphaera fuliginea. Sci. Hortic. 2020;261:108780. doi: 10.1016/j.scienta.2019.108780. DOI

Khoshru B., Mitra D., Nosratabad A.F., Reyhanitabar A., Mandal L., Farda B., Djebaili R., Pellegrini M., Guerra-Sierra B.E., Senapati A., et al. Enhancing manganese availability for plants through microbial potential: A sustainable approach for improving soil health and food security. Bacteria. 2023;2:129–141. doi: 10.3390/bacteria2030010. DOI

Rengel Z., Cakmak I., White J.P., editors. Marschner’s Mineral Nutrition of Plants. Elsevier Science Publishing; Amsterdam, The Netherlands: 2022. DOI

Diedrick K. Manganese fertility in soybean production. Pioneer Hi-Bred Agron. Sci. 2010;20:23–34.

Millaleo R., Reyes-Diaz M., Ivanov A., Mora M., Alberdi M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 2010;10:470–481. doi: 10.4067/S0718-95162010000200008. DOI

Moss A.J. Advance Data, Vital and Health Statistics of the National Center for Health Statistics. National Center for Health Statistics; Hyattsville, MD, USA: 1989. Use of vitamin and mineral supplements in the United States: Current uses, types of products, and nutrients. No. 174.

Bornhorst J., Wehe C.A., Huwel S., Karst U., Galla H.J., Schwerdtle T. Impact of manganese on and transfer across blood-brain and blood-cerebrospinal fluid barrier in vitro. J. Biol. Chem. 2012;287:17140–17151. doi: 10.1074/jbc.M112.344093. PubMed DOI PMC

Rubin L.L., Staddon J.M. The cell biology of the blood-brain barrier. Annu. Rev. Neurosci. 1999;22:11–28. doi: 10.1146/annurev.neuro.22.1.11. PubMed DOI

Yoon M., Schroeter J.D., Nong A., Taylor M.D., Dorman D.C., Andersen M.E., Clewell H.J. Physiologically based pharmacokinetic modeling of fetal and neonatal manganese exposure in humans: Describing manganese homeostasis during development. Toxicol. Sci. 2011;122:297–316. doi: 10.1093/toxsci/kfr141. PubMed DOI

Carmichael S.K., Bräuer S.L. Microbial Life of Cave Systems. De Gruyter; Göttingen, Germany: 2015. 7. Microbial diversity and manganese cycling: A review of manganese-oxidizing microbial cave communities; pp. 137–160. DOI

Anonymous. 2024. [(accessed on 20 February 2024)]. Available online: https://www.slideserve.com/keren/manganese-cycle.

Carmichael S.K., Zorn B.T., Santelli C.M., Roble L.A., Carmichael M.J., Bräuer S.L. Nutrient input influences fungal community composition and size and can stimulate manganese (II) oxidation in caves. Environ. Microbiol. Rep. 2015;7:592–605. doi: 10.1111/1758-2229.12291. PubMed DOI

Paula C.C., Bichuette M.E., Seleghim M.H. Nutrient availability in tropical caves influences the dynamics of microbial biomass. MicrobiologyOpen. 2020;9:e1044. doi: 10.1002/mbo3.1044. PubMed DOI PMC

Malakouti M.J., Tehrani M.H. Effect of Micronutrients on the Yield and Quality of Agricultural Products: Micro-Nutrients with Macro-Effects. Tarbiat Modares University; Tehran, Iran: 1999.

Schulte E.E., Kelling K.A. Soil and Applied Manganese. Understanding Plant Nutrients. University of Wisconsin-Madison and University of Wisconsin-Extension; Madison, WI, USA: 1999. A2526.

Bean E.L. Potable water–quality goals. J. AWWA. 1974;66:221–230. doi: 10.1002/j.1551-8833.1974.tb02011.x. DOI

Ginige M.P., Wylie J., Plumb J. Influence of biofilms on iron and manganese deposition in drinking water distribution systems. Biofouling. 2011;27:151–163. doi: 10.1080/08927014.2010.547576. PubMed DOI

ATSDR . Toxicological Profile for Manganese. U.S. Department of Health and Human Services. Public Health Service. Agency for Toxic Substances and Disease Registry; Atlanta, GA, USA: 2012. 556p PubMed

Barceloux D.G., Barceloux D. Manganese. J. Toxicol. Clin. Toxicol. 1999;37:293–307. doi: 10.1081/CLT-100102427. PubMed DOI

Leahy P., Thompson T. Overview of the National Water-Quality Assessment Program. U.S. Geological Survey; Reston, VA, USA: 1994. Open-File Report. DOI

USGS US Geological Survey National Water Quality Assessment Data Warehouse. [(accessed on 22 August 2024)];2001 Available online: https://www.usgs.gov/mission-areas/water-resources/science/national-water-quality-assessment-nawqa.

Gherardi M.J., Rengel Z. Deep placement of manganese fertiliser improves sustainability of Lucerne growing on bauxite residue: A glasshouse study. Plant Soil. 2003;257:85–95. doi: 10.1023/A:1026252114933. DOI

Mills R.F., Doherty M.L., López-Marqués R.L., Weimar T., Dupree P., Palmgren M.G., Pittman J.K., Williams L.E. ECA3, a golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in arabidopsis. Plant Physiol. 2007;146:116–128. doi: 10.1104/pp.107.110817. PubMed DOI PMC

Humphries J., Stangoulis J., Graham R. Manganese. In: Barker A., Pilbeam D., editors. Handbook of Plant Nutrition. Taylor and Francis; New York, NY, USA: 2007. pp. 351–366.

Clarkson D.T. Manganese in Soils and Plants. Springer; Dordrecht, The Netherlands: 1988. The uptake and translocation of manganese by plant roots; pp. 101–111. DOI

Maas E.V., Moore D.P., Mason B.J. Manganese absorption by excised Barley roots. Plant Physiol. 1968;43:527–530. doi: 10.1104/pp.43.4.527. PubMed DOI PMC

Takahashi M., Sugiura M. Strategies for uptake of a soil micronutrient, manganese, by plant roots. Riken Rev. 2001;35:76–77.

Zhang H., Lombi E., Smolders E., McGrath S. Kinetics of Zn release in soils and prediction of Zn concentration in plants using diffusive gradients in thin films. Environ. Sci. Technol. 2004;38:3608–3613. doi: 10.1021/es0352597. PubMed DOI

Rengel Z., Marschner P. Nutrient availability and management in the rhizosphere: Exploiting genotypic differences. New Phytol. 2005;168:305–312. doi: 10.1111/j.1469-8137.2005.01558.x. PubMed DOI

Mukhopadhyay M.J., Sharma A. Manganese in cell metabolism of higher plants. Bot. Rev. 1991;57:117–149. doi: 10.1007/BF02858767. DOI

Jackson C., Dench J., Moore A.L., Halliwell B., Foyer C.H., Hall D.O. Subcellular localisation and identification of superoxide Dismutase in the leaves of higher plants. Eur. J. Biochem. 1978;91:339–344. doi: 10.1111/j.1432-1033.1978.tb12685.x. PubMed DOI

Uehara K., Fujimoto S., Taniguchi T., Nakai K. Studies on Violet-colored acid Phosphatase of sweet potato. J. Biochem. 1974;75:639–649. doi: 10.1093/oxfordjournals.jbchem.a130432. PubMed DOI

Burnell J.N. Manganese in Soils and Plants. Springer; Dordrecht, The Netherlands: 1988. The biochemistry of manganese in plants; pp. 125–137. DOI

Anderson J.M., Pyliotis N. Studies with manganese-deficient spinach chloroplasts. Biochim. Biophys. Acta (BBA)-Bioenerg. 1969;189:280–293. doi: 10.1016/0005-2728(69)90054-1. PubMed DOI

Ness P.J., Woolhouse H.W. RNA synthesis in PhaseolusChloroplasts. J. Exp. Bot. 1980;31:235–245. doi: 10.1093/jxb/31.1.235. DOI

Mousavi S.R., Shahsavari M., Rezaei M. A General Overview on Manganese (Mn) Importance for Crops Production. Aust. J. Basic Appl. Sci. 2011;5:1799–1803.

Ndakidemi P.A., Bambara S.J., Makoi H.J.R. Micronutrient uptake in common bean (Phaseolus vulgaris L.) as affected by Rhizobium inoculation, and the supply of molybdenum and lime. Plant Omics J. Plant Biol. Omics. 2011;4:40–52.

Ahangar A.G., Karimian N., Abtahi A., Assad M.T., Emam Y. Growth and manganese uptake by soybean in highly calcareous soils as affected by native and applied manganese and predicted by nine different extractants. Commun. Soil Sci. Plant Anal. 1995;26:1441–1454. doi: 10.1080/00103629509369383. DOI

Polle A., Chakrabarti K., Chakrabarti S., Seifert F., Schramel P., Rennenberg H. Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies L.) trees. Plant Physiol. 1992;99:1084–1089. doi: 10.1104/pp.99.3.1084. PubMed DOI PMC

Ohki K., Wilson D.O., Anderson O.E. Manganese deficiency and toxicity sensitivities of soybean cultivars. Agron. J. 1980;72:713–716. doi: 10.2134/agronj1980.00021962007200050005x. DOI

Messant M., Hani U., Hennebelle T., Guérard F., Gakière B., Gall A., Thomine S., Krieger-Liszkay A. Manganese concentration affects chloroplast structure and the photosynthetic apparatus in Marchantia polymorpha. Plant Physiol. 2023;192:356–369. doi: 10.1093/plphys/kiad052. PubMed DOI PMC

Alejandro S., Höller S., Meier B., Peiter E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci. 2020;11:517877. doi: 10.3389/fpls.2020.00300. PubMed DOI PMC

Zewide I., Sherefu A. Review paper on effect of micronutrients for crop production. Nutr. Food Process. 2021;4:01–08. doi: 10.31579/2637-8914/063. PubMed DOI

TEAGASC Manganese: Manganese Deficiency in CROPS. 2017. [(accessed on 6 September 2024)]. Available online: https://www.teagasc.ie/crops/soil--soil-fertility/nutrient-deficiencies/manganese/

Jordan D. Manganese Deficiency in Peanuts. Peanut Notes No. 140. 2024. [(accessed on 6 September 2024)]. Available online: https://peanut.ces.ncsu.edu/2024/07/manganese-deficiency-in-peanuts-peanut-notes-no-140-2024/

Longnecker N.E., Graham R.D., Card G. Effects of manganese deficiency on the pattern of tillering and development of Barley (Hordeum vulgare c.v. Galleon) Field Crops Res. 1991;28:85–102. doi: 10.1016/0378-4290(91)90076-8. DOI

Sharma C.P., Sharma P.N., Chatterjee C., Agarwala S.C. Manganese deficiency in maize affects pollen viability. Plant Soil. 1991;138:139–142. doi: 10.1007/BF00011816. DOI

Smith M.W., Cheary B.S., Landgraf B.S. Manganese deficiency in pecan. HortScience. 2001;36:1075–1076. doi: 10.21273/HORTSCI.36.6.1075. DOI

Batey T. Manganese and boron deficiency in trace elements in soil and crops. Tech. Bull. 1971;21:137–148.

Wissemeier A.H., Horst W.J. Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L.) Walp.) Plant Soil. 1992;143:299–309. doi: 10.1007/BF00007886. DOI

Reichman S.M. The Responses of Plants to Metal Toxicity: A Review Focusing on Copper, Manganese, and Zinc. Australian Minerals and Energy Environment Foundation; Melbourne, Australia: 2002.

Bachman G.R., Miller W.B. Iron chelate inducible iron/manganese toxicity in zonal geranium. J. Plant Nutr. 1995;18:1917–1929. doi: 10.1080/01904169509365033. DOI

Wu J.D. Effect of manganese excess on the soybean plant cultivated under various growth conditions. J. Plant Nutr. 1994;17:991–1003. doi: 10.1080/01904169409364783. DOI

Brown J.C., Ambler J.E., Chaney R.L., Foy C.D. Micronutrients in Agriculture. Soil Science Society of America; Madison, WI, USA: 1972. Differential responses of plant genotypes to micronutrients; pp. 389–418.

Edwards D.G., Asher C.J. Tolerance of crop and pasture species to manganese toxicity; Proceedings of the Ninth Plant Nutrition Colloquium; Warwick, UK. 22–27 August 1982; pp. 145–150.

Rezai K., Farboodnia T. The response of pea plant to manganese toxicity in solution culture. J. Agric. Sci. 2008;3:248–251.

Terry N., Evans P.S., Thomas D.E. Manganese toxicity effects on leaf cell multiplication and expansion and on dry matter yield of sugar Beets1. Crop. Sci. 1975;15:205–208. doi: 10.2135/cropsci1975.0011183X001500020019x. DOI

Guan W., Egel D. Purdue University; 2017. [(accessed on 7 August 2024)]. Manganese Toxicity on Cantaloupes. Available online: https://vegcropshotline.org/article/manganese-toxicity-on-cantaloupes/

Rabêlo V.M., Magalhães P.C., Bressanin L.A., Carvalho D.T., Reis C.O., Karam D., Doriguetto A.C., Santos M.H., Santos Filho P.R., Souza T.C. The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Sci. Rep. 2019;9:8164. doi: 10.1038/s41598-019-44649-7. PubMed DOI PMC

Mousavi S.R., Galavi M., Ahmadvand G. Effect of zinc and manganese foliar application on yield, quality, and enrichment on potato (Solanum tuberosum L.) Asian J. Plant Sci. 2007;6:1256–1260. doi: 10.3923/ajps.2007.1256.1260. DOI

Hiller L.K. Foliar Fertilization Bumps Potato Yields in Northwest: Rate and Timing of Application, Plus Host of Other Considerations, Are Critical in Applying Foliars to Potatoes. Fluid J. 1995;10:28–30.

Brown S., Walworth J.L. Field Crop Fertilizer Recommendations for Alaska Potatoes. University of Alaska Fairbanks, Cooperative Extension Service; Fairbanks, AK, USA: 1998. Crop production and soil management series.

Bansal R.L., Nayyar V.K. Differential tolerance of soybean (Glycine max) to manganese in Mn-deficient soil. [(accessed on 22 August 2024)];Indian J. Agric. Sci. 1994 64 Available online: https://epubs.icar.org.in/index.php/IJAgS/article/view/29447.

Mahler R.L., Li G.C., Wattenbarger D.W. Manganese relationships in spring wheat and spring Barley production in northern Idaho. Commun. Soil Sci. Plant Anal. 1992;23:1671–1692. doi: 10.1080/00103629209368696. DOI

Aref F. Influence of zinc and boron nutrition on copper, manganese, and iron concentration in the maize leaf. Aust. J. Basic Appl. Sci. 2011;5:52–62.

Spiers J.M. Nitrogen, calcium, and magnesium fertilization affects growth and leaf elemental content of ‘dormanred’ raspberry. J. Plant Nutr. 1993;16:2333–2339. doi: 10.1080/01904169309364691. DOI

Hewitt E.J. Relation of manganese and some other metals to the iron status of plants. Nature. 1948;161:489–490. doi: 10.1038/161489a0. PubMed DOI

Zhu Y., Smith F.A., Smith S.E. Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different Barley (Hordeum vulgare) cultivars grown in sand culture. Aust. J. Agric. Res. 2002;53:211. doi: 10.1071/AR01085. DOI

Ponnamperuma F. The chemistry of submerged soils. Adv. Agron. 1972:29–96. doi: 10.1016/s0065-2113(08)60633-1. DOI

Dhaliwal S.S., Walia S.S. Integrated nutrient management for sustaining maximum productivity of rice-wheat system under Punjab conditions. J. Res. Punjab Agric. Univ. 2008;45:12–16.

Walia S.S., Kler D.S. Effect of organic and inorganic sources of nutrition on growth, macro and micro nutrient uptake in maize under maize-wheat sequence. Indian J. Ecol. 2010;37:27–29.

Hansen S.L., Trakooljul N., Liu H.-C., Moeser A.J., Spears J.W. Iron transporters are differentially regulated by dietary iron, and modifications are associated with changes in manganese metabolism in young pigs. J. Nutr. 2009;139:1474–1479. doi: 10.3945/jn.109.105866. PubMed DOI

Lönnerdal B., Keen C., Hurley L. Manganese binding proteins in human and cow’s milk. Am. J. Clin. Nutr. 1985;41:550–559. doi: 10.1093/ajcn/41.3.550. PubMed DOI

Davidson L.A., Lonnerdal B. FE-saturation and proteolysis of human lactoferrin: Effect on brush-border receptor-mediated uptake of FE and Mn. Am. J. Physiol.-Gastrointest. Liver Physiol. 1989;257:G930–G934. doi: 10.1152/ajpgi.1989.257.6.G930. PubMed DOI

Soares A.T., Silva A.D., Tinkov A.A., Khan H., Santamaría A., Skalnaya M.G., Skalny A.V., Tsatsakis A., Bowman A.B., Aschner M., et al. The impact of manganese on neurotransmitter systems. J. Trace Elem. Med. Biol. 2020;61:126554. doi: 10.1016/j.jtemb.2020.126554. PubMed DOI PMC

Davidson L., Cederblad A., Lönnerdal B., Sandström B. The effect of individual dietary components on manganese absorption in humans. Am. J. Clin. Nutr. 1991;54:1065–1070. doi: 10.1093/ajcn/54.6.1065. PubMed DOI

Davis C.D., Zech L., Greger J.L. Manganese metabolism in rats: An improved methodology for assessing gut endogenous losses. Exp. Biol. Med. 1993;202:103–108. doi: 10.3181/00379727-202-43518. PubMed DOI

Raghib M.H., Wai-Yee C., Rennert M.O. Comparative biological availability of manganese from extrinsically labelled milk diets using sucking rats as a model. Br. J. Nutr. 1986;55:49–58. doi: 10.1079/BJN19860009. PubMed DOI

Keen C.L., Bell J.G., Lonnerdal B. The effect of age on manganese uptake and retention from milk and infant formulas in rats. J. Nutr. 1986;116:395–402. doi: 10.1093/jn/116.3.395. PubMed DOI

Guan H., Wang M., Li X., Piao F., Li Q., Xu L., Kitamura F., Yokoyama K. Manganese concentrations in maternal and umbilical cord blood: Related to birth size and environmental factors. Eur. J. Public Health. 2013;24:150–157. doi: 10.1093/eurpub/ckt033. PubMed DOI

Zota A.R., Ettinger A.S., Bouchard M., Amarasiriwardena C.J., Schwartz J., Hu H., Wright R.O. Maternal blood manganese levels and infant birth weight. Epidemiology. 2009;20:367–373. doi: 10.1097/EDE.0b013e31819b93c0. PubMed DOI PMC

Yu E., Zhao R., Cai Y., Huang J., Li C., Li C., Mei L., Bao L., Chen J., Zhu S. Determination of manganese content in cottonseed meal using near-infrared spectrometry and multivariate calibration. J. Cotton Res. 2019;2:12. doi: 10.1186/s42397-019-0030-5. DOI

Chen L., Ding G., Gao Y., Wang P., Shi R., Huang H., Tian Y. Manganese concentrations in maternal–infant blood and birth weight. Environ. Sci. Pollut. Res. 2014;21:6170–6175. doi: 10.1007/s11356-013-2465-4. PubMed DOI

Couper J. On the effects of black oxide of manganese when inhaled into the lungs. Br. Ann. Med. Pharm. Vital Stat. Gen. Sci. 1837;1:41–42.

Huang C.C., Chu N.S., Lu C.S., Wang J.D., Tsai J.L., Tzeng J.L., Wolters E.C., Calne D.B. Chronic manganese intoxication. Arch. Neurol. 1989;46:1104–1106. doi: 10.1001/archneur.1989.00520460090018. PubMed DOI

Dorman D.C., Struve M.F., James R.A., McManus B.E., Marshall M.W., Wong B.A. Influence of dietary manganese on the pharmacokinetics of inhaled manganese sulfate in male CD rats. Toxicol. Sci. 2001;60:242–251. doi: 10.1093/toxsci/60.2.242. PubMed DOI

Russell R., Beard J.L., Cousins R.J., Dunn J.T., Ferland G., Hambidge K.M., Lynch S., Penland J.G., Ross A.C., Stoecker B.J., et al. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Food and Nutrition Board, Institute of Medicine. National Academy Press; Washington, DC, USA: 2001. DOI

US EPA . Health Effects Support Document for Manganese. US Environmental Protection Agency, Office of Water; Washington, DC, USA: 2002.

Gordon N.P., Schaffer D.M. Use of dietary supplements by female seniors in a large Northern California health plan. BMC Geriatr. 2005;5:4. doi: 10.1186/1471-2318-5-4. PubMed DOI PMC

Freeland-Graves J.H., Bales C.W., Behmardi F. Manganese requirements of humans. In: Kies C., editor. Nutritional Bioavailability of Manganese. American Chemical Society; Washington, DC, USA: 1987. pp. 90–104.

Greger J.L. Nutrition versus toxicology of manganese in humans: Evaluation of potential biomarkers. Neurotoxicology. 1999;20:205–212. PubMed

Chen P., Bornhorst J., Aschner M. Manganese metabolism in humans. Front. Biosci. (Landmark Ed). 2018;23:1655–1679. doi: 10.2741/4665. PubMed DOI

Aschner J.L., Aschner M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005;26:353–362. doi: 10.1016/j.mam.2005.07.003. PubMed DOI PMC

Finley J., Johnson P., Johnson L. Sex affects manganese absorption and retention by humans from a diet adequate in manganese. Am. J. Clin. Nutr. 1994;60:949–955. doi: 10.1093/ajcn/60.6.949. PubMed DOI

O’Neal S.L., Zheng W. Manganese toxicity upon overexposure: A decade in review. Curr. Environ. Health Rep. 2015;2:315–328. doi: 10.1007/s40572-015-0056-x. PubMed DOI PMC

Greger J. Dietary standards for manganese: Overlap between nutritional and toxicological studies. J. Nutr. 1998;128:368S–371S. doi: 10.1093/jn/128.2.368S. PubMed DOI

NIH Manganese. National Institutes of Health, Office of Dietary Supplements. [(accessed on 12 September 2024)];2015 Available online: https://ods.od.nih.gov/factsheets/Manganese-Consumer/

Khan K., Wasserman G.A., Liu X., Ahmed E., Parvez F., Slavkovich V., Levy D., Mey J., van Geen A., Graziano J.H. Manganese exposure from drinking water and children’s academic achievement. Neurotoxicology. 2012;33:91–97. doi: 10.1016/j.neuro.2011.12.002. PubMed DOI PMC

DeSimone L.A., Hamilton P.A., Gilliom R.J. Quality of Water from Domestic Wells in Principal Aquifers of the United States, 1991–2004. US Department of the Interior, US Geological Survey; Reston, VA, USA: 2009.

Khan K., Factor-Litvak P., Wasserman G.A., Liu X., Ahmed E., Parvez F., Slavkovich V., Levy D., Mey J., van Geen A. Manganese exposure from drinking water and children’s classroom behavior in Bangladesh. Environ. Health Perspect. 2011;119:1501. doi: 10.1289/ehp.1003397. PubMed DOI PMC

Collipp P., Chen S., Maitinsky S. Manganese in infant formulas and learning disability. Ann. Nutr. Metab. 1983;27:488–494. doi: 10.1159/000176724. PubMed DOI

Tran T.T., Chowanadisai W., Crinella F.M., Chicz-DeMet A., Lönnerdal B. Effect of high dietary manganese intake of neonatal rats on tissue mineral accumulation, striatal dopamine levels, and neurodevelopmental status. Neurotoxicology. 2002;23:635–643. doi: 10.1016/S0161-813X(02)00091-8. PubMed DOI

Leblondel G., Allain P. Manganese transport by caco-2 cells. Biol. Trace Elem. Res. 1999;67:13–28. doi: 10.1007/BF02784271. PubMed DOI

Garcia-Aranda J.A., Wapnir R.A., Lifshitz F. In vivo intestinal absorption of manganese in the rat. J. Nutr. 1983;113:2601–2607. doi: 10.1093/jn/113.12.2601. PubMed DOI

Mena I., Horiuchi K., Burke K., Cotzias G.C. Chronic manganese poisoning: Individual susceptibility and absorption of iron. Neurology. 1969;19:1000. doi: 10.1212/WNL.19.10.1000. PubMed DOI

Garcia S.J., Gellein K., Syversen T., Aschner M. Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicol. Sci. 2007;95:205–214. doi: 10.1093/toxsci/kfl139. PubMed DOI

Lönnerdal B. Lactoferrin Structure and Function. Springer; Boston, MA, USA: 1994. Lactoferrin receptors in intestinal brush border membranes; pp. 171–175. PubMed DOI

Keen C., Ensunsa J., Lönnerdal B., Zidenberg-Cherr S. Encyclopedia of Human Nutrition. Elsevier; Amsterdam, The Netherlands: 2005. Manganese; pp. 217–225. DOI

Dorman D.C., Foster M.L. Manganese in Health and Disease. The Royal Society of Chemistry; Cambridge, UK: 2014. Olfactory transport of manganese: Implications for neurotoxicity; pp. 119–132. DOI

Ávila D.S., Rocha J.B., Tizabi Y., Dos Santos A.P., Santamaría A., Bowman A.B., Aschner M. Handbook of Neurotoxicity. Springer International Publishing; Cham, Switzerland: 2021. Manganese neurotoxicity; pp. 1–26. DOI

Bowler R.M., Gocheva V., Harris M., Ngo L., Abdelouahab N., Wilkinson J., Doty R.L., Park R., Roles H.A. Prospective study on neurotoxic effects in manganese-exposed bridge construction welders. Neurotoxicology. 2011;32:596–605. doi: 10.1016/j.neuro.2011.06.004. PubMed DOI

Chen P., Chakraborty S., Mukhopadhyay S., Lee E., Paoliello M.M., Bowman A.B., Aschner M. Manganese homeostasis in the nervous system. J. Neurochem. 2015;134:601–610. doi: 10.1111/jnc.13170. PubMed DOI PMC

de Bie R.M., Gladstone R.M., Strafella A.P., Ko J.-H., Lang A.E. Manganese-induced Parkinsonism associated with methcathinone (Ephedrone) abuse. Arch. Neurol. 2007;64:886–889. doi: 10.1001/archneur.64.6.886. PubMed DOI

Sikk K., Taba P., Haldre S., Bergquist J., Nyholm D., Askmark H., Danfors T., Sörensen J., Thurfjell L., Raininko R. Clinical, neuroimaging and neurophysiological features in addicts with manganese-ephedrone exposure. Acta Neurol. Scand. 2010;121:237–243. doi: 10.1111/j.1600-0404.2009.01189.x. PubMed DOI

Sikk K., Haldre S., Aquilonius S.M., Asser A., Paris M., Roose Ä., Petterson J., Eriksson S.L., Bergquist J., Taba P. Manganese-induced parkinsonism in methcathinone abusers: Biomarkers of exposure and follow-up. Eur. J. Neurol. 2013;20:915–920. doi: 10.1111/ene.12088. PubMed DOI

Sikk K., Haldre S., Aquilonius S., Taba P. Manganese-induced parkinsonism due to Ephedrone abuse. Park. Dis. 2011;2011:865319. doi: 10.4061/2011/865319. PubMed DOI PMC

Zhang L.-L., Lu L., Pan Y.-J., Ding C.-G., Xu D.-Y., Huang C.-F., Pan X.-F., Zheng W. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb. Environ. Res. 2015;140:10–17. doi: 10.1016/j.envres.2015.03.008. PubMed DOI PMC

Leggett R.W. A biokinetic model for manganese. Sci. Total Environ. 2011;409:4179–4186. doi: 10.1016/j.scitotenv.2011.07.003. PubMed DOI

Crossgrove J.S., Yokel R.A. Manganese distribution across the blood–brain barrier III. The divalent metal transporter-1 is not the major mechanism mediating brain manganese uptake. Neurotoxicology. 2004;25:451–460. doi: 10.1016/j.neuro.2003.10.005. PubMed DOI

Jiang Y., Zheng W., Long L., Zhao W., Li X., Mo X., Lu J., Fu X., Li W., Liu S. Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: Search for biomarkers of manganese exposure. Neurotoxicology. 2007;28:126–135. doi: 10.1016/j.neuro.2006.08.005. PubMed DOI PMC

Reaney S.H., Kwik-Uribe C.L., Smith D.R. Manganese oxidation state and its implications for toxicity. Chem. Res. Toxicol. 2002;15:1119–1126. doi: 10.1021/tx025525e. PubMed DOI

Harris W.R., Chen Y. Electron paramagnetic resonance and difference ultraviolet studies of Mn2+ binding to serum transferrin. J. Inorg. Biochem. 1994;54:1–19. doi: 10.1016/0162-0134(94)85119-0. PubMed DOI

Nischwitz V., Berthele A., Michalke B. Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: An approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier. Anal. Chim. Acta. 2008;627:258–269. doi: 10.1016/j.aca.2008.08.018. PubMed DOI

Jursa T., Smith D.R. Ceruloplasmin alters the tissue disposition and neurotoxicity of manganese, but not its loading onto transferrin. Toxicol. Sci. 2009;107:182–193. doi: 10.1093/toxsci/kfn231. PubMed DOI PMC

Gunter T.E., Gerstner B., Gunter K.K., Malecki J., Gelein R., Valentine W.M., Aschner M., Yule D.I. Manganese transport via the transferrin mechanism. Neurotoxicology. 2013;34:118–127. doi: 10.1016/j.neuro.2012.10.018. PubMed DOI PMC

Nam H., Wang C.-Y., Zhang L., Zhang W., Hojyo S., Fukada T., Knutson M.D. ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: Implications for tissue iron uptake in iron-related disorders. Haematologica. 2013;98:1049–1057. doi: 10.3324/haematol.2012.072314. PubMed DOI PMC

Aisen P., Leibman A., Zweier J. Stoichiometric and site characteristics of the binding of iron to human transferrin. J. Biol. Chem. 1978;253:1930–1937. doi: 10.1016/S0021-9258(19)62337-9. PubMed DOI

Moos T., Morgan E. Transferrin and transferrin receptor function in brain barrier systems. Cell. Mol. Neurobiol. 2000;20:77–95. doi: 10.1023/A:1006948027674. PubMed DOI PMC

Jenkitkasemwong S., Wang C.-Y., Mackenzie B., Knutson M. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. BioMetals. 2012;25:643–655. doi: 10.1007/s10534-012-9526-x. PubMed DOI PMC

Inoue K., Zhuang L., Maddox D.M., Smith S.B., Ganapathy V. Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. J. Biol. Chem. 2002;277:39469–39476. doi: 10.1074/jbc.M207072200. PubMed DOI

Quadri M., Federico A., Zhao T., Breedveld G.J., Battisti C., Delnooz C., Severijnen L.-A., Di Toro Mammarella L., Mignarri A., Monti L., et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am. J. Hum. Genet. 2012;90:467–477. doi: 10.1016/j.ajhg.2012.01.017. PubMed DOI PMC

Donovan A., Lima C.A., Pinkus J.L., Pinkus G.S., Zon L.I., Robine S., Andrews N.C. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1:191–200. doi: 10.1016/j.cmet.2005.01.003. PubMed DOI

Sharon L., Feng M., Muend S., Braiterman L.T., Hubbard A.L., Rao R. Vesicular Distribution of Secretory Pathway Ca2+-ATPase Isoform 1 and a Role in Manganese Detoxification in Liver-Derived Polarized Cells. Biometals. 2011;24:159–170. PubMed PMC

Schroeder H.A., Balassa J.J., Tipton I.H. Essential trace metals in man: Manganese. J. Chronic Dis. 1966;19:545–571. doi: 10.1016/0021-9681(66)90094-4. PubMed DOI

Rahil-Khazen R., Bolann B.J., Myking A., Ulvik R.J. Multi-element analysis of trace element levels in human autopsy tissues by using inductively coupled atomic emission spectrometry technique (ICP-AES) J. Trace Elem. Med. Biol. 2002;16:15–25. doi: 10.1016/S0946-672X(02)80004-9. PubMed DOI

Pejović-Milić A., Chettle D.R., Oudyk J., Pysklywec M.W., Haines T. Bone manganese as a biomarker of manganese exposure: A feasibility study. Am. J. Ind. Med. 2009;52:742–750. doi: 10.1002/ajim.20737. PubMed DOI

O’Neal S.L., Hong L., Fu S., Jiang W., Jones A., Nie L.H., Zheng W. Manganese accumulation in bone following chronic exposure in rats: Steady-state concentration and half-life in bone. Toxicol. Lett. 2014;229:93–100. doi: 10.1016/j.toxlet.2014.06.019. PubMed DOI PMC

Kodama H., Shimojo N., Suzuki K.T. Distribution of manganese in rat pancreas and identification of its primary binding protein as pro-carboxypeptidase B. Biochem. J. 1991;278:857–862. doi: 10.1042/bj2780857. PubMed DOI PMC

Rorsman P., Berggren P.-O., Hellman B. Manganese accumulation in pancreatic β-cells and its stimulation by glucose. Biochem. J. 1982;202:435–444. doi: 10.1042/bj2020435. PubMed DOI PMC

Koh E.S., Kim S.J., Yoon H.E., Chung J.H., Chung S., Park C.W., Chang Y.S., Shin S.J. Association of blood manganese level with diabetes and renal dysfunction: A cross-sectional study of the Korean general population. BMC Endocr. Disord. 2014;14:24. doi: 10.1186/1472-6823-14-24. PubMed DOI PMC

Ponnapakkam T., Iszard M., Henry-Sam G. Effects of oral administration of manganese on the kidneys and urinary bladder of Sprague-Dawley rats. Int. J. Toxicol. 2003;22:227–232. doi: 10.1080/10915810305103. PubMed DOI

Henriksson J., Tjalve H. Manganese taken up into the CNS via the olfactory pathway in rats affects astrocytes. Toxicol. Sci. 2000;55:392–398. doi: 10.1093/toxsci/55.2.392. PubMed DOI

Zogzas C.E., Aschner M., Mukhopadhyay S. Structural elements in the transmembrane and cytoplasmic domains of the metal transporter SLC30A10 are required for its manganese efflux activity. J. Biol. Chem. 2016;291:15940–15957. doi: 10.1074/jbc.M116.726935. PubMed DOI PMC

Ng E., Lind P.M., Lindgren C., Ingelsson E., Mahajan A., Morris A., Lind L. Genome-wide association study of toxic metals and trace elements reveals novel associations. Hum. Mol. Genet. 2015;24:4739–4745. doi: 10.1093/hmg/ddv190. PubMed DOI PMC

Fujishiro H., Yano Y., Takada Y., Tanihara M., Himeno S. Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics. 2012;4:700–708. doi: 10.1039/c2mt20024d. PubMed DOI

Leyva-Illades D., Chen P., Zogzas C.E., Hutchens S., Mercado J.M., Swaim C.D., Morrisett R.A., Bowman A.B., Aschner M., Mukhopadhyay S. SLC30A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity. J. Neurosci. 2014;34:14079–14095. doi: 10.1523/JNEUROSCI.2329-14.2014. PubMed DOI PMC

Avila D.S., Puntel R.L., Aschner M. Manganese in health and disease. Met. Ions Life Sci. 2013;13:199–227. doi: 10.1007/978-94-007-7500-8_7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...