Mechanical and Thermal Properties of Geopolymer Foams (GFs) Doped with By-Products of the Secondary Aluminum Industry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35215616
PubMed Central
PMC8878777
DOI
10.3390/polym14040703
PII: polym14040703
Knihovny.cz E-zdroje
- Klíčová slova
- by-products recycling, geopolymer foam, hydrogen, secondary aluminum,
- Publikační typ
- časopisecké články MeSH
The article deals with the investigation of geopolymer foams (GFs) synthesized using by-products coming from the (i) screening-, (iv) pyrolysis-, (iii) dust abatement- and (iv) fusion-processes of the secondary aluminum industry. Based on principles of the circular economy to produce new technological materials, the experimental study involves industrial by-products management through the recovery, chemical neutralization, and incorporation of these relatively hazardous waste into the GFs. The geopolymeric matrix, consisting of metakaolin (MK) and silica sand (SA) with a 1:1 wt.% ratio, and chopped carbon fibers (CFs, 1 wt.% MK), was doped with the addition of different aluminum-rich industrial by-products with a percentage from 1 to 10 wt.% MK. The gas (mainly hydrogen) produced during the chemical neutralization of the by-products represents the foaming agents trapped in the geopolymeric structure. Several experimental tests were carried out to characterize the mechanical (flexural, compressive, and Charpy impact strengths) and thermal properties (thermal conductivity, and diffusivity, and specific heat) of the GFs. Results identify GFs with good mechanical and thermal insulation properties, encouraging future researchers to find the best combination (for types and proportions) of the different by-products of the secondary aluminum industry to produce lightweight geopolymer foams. The reuse of these industrial by-products, which according to European Regulations cannot be disposed of in the landfill, also brings together environmental sustainability and safe management of hazardous material in workplaces addressed to the development of new materials.
Zobrazit více v PubMed
Wang S., Li H., Zou S., Zhang G. Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy Build. 2020;226:110358. doi: 10.1016/j.enbuild.2020.110358. DOI
Zhang Z., Provis J., Reid A., Wang H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr. Build. Mater. 2014;56:113–127. doi: 10.1016/j.conbuildmat.2014.01.081. DOI
Sanjayan J.G., Nazari A., Chen L., Nguyen G.H. Physical and mechanical properties of lightweight aerated geopolymer. Constr. Build. Mater. 2015;79:236–244. doi: 10.1016/j.conbuildmat.2015.01.043. DOI
Amran M., Al-Fakih A., Chu S.H., Fediuk R., Haruna S., de Azevedo A.R.G., Vatin N. Long-term durability properties of geopolymer concrete: An indepth review. Case Stud. Constr. Mater. 2021;15:e00661. doi: 10.1016/j.cscm.2021.e00661. DOI
Janošević N., Djoric-Veljkovic S., Toplicic-Curcic G.A., Karamarkovic J. Properties of geopolymers. Facta Univ. Ser. Archit. Civ. Eng. 2018;16:45–56. doi: 10.2298/FUACE161226004J. DOI
Vempada S.R., Shrihari S., Rajashekar C. Parametric studies on the properties of geopolymer concrete. E3S Web Conf. 2021;309:01101.
Ahmed F.B., Biswas R.K., Ahsan K.A., Islam S., Rahman M.R. Estimation of strength properties of geopolymer concrete. Mater. Today Proc. 2020;44:871–877. doi: 10.1016/j.matpr.2020.10.790. DOI
Rajak M., Goel V., Rai B. Advances in Sustainable Construction Materials. Springer; Singapore: 2021. Synthesis, Characterization and Mechanical Properties of Geopolymer Paste; pp. 721–735.
Singh N., Kumar M., Rai S. Geopolymer cement and concrete: Properties. Mater. Today Proc. 2020;29:743–748. doi: 10.1016/j.matpr.2020.04.513. DOI
van Su L., Szczypiński M.M., Hajkova P., Kovacic V., Bakalova T., Voleský L., Le H., Louda P. Mechanical properties of geopolymer foam at high temperature. Sci. Eng. Compos. Mater. 2020;27:10.
Kumar R., Verma M., Dev N. Investigation on the Effect of Seawater Condition, Sulphate Attack, Acid Attack, Freeze–Thaw Condition, and Wetting–Drying on the Geopolymer Concrete. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021:1–31. doi: 10.1007/s40996-021-00767-9. DOI
Novais Rui M.C., Pullar R., Labrincha J.A. Geopolymer foams: An overview of recent advancements. Prog. Mater. Sci. 2020;109:100621. doi: 10.1016/j.pmatsci.2019.100621. DOI
Arnoult M., Perronnet M., Autef A., Nait-Ali B., Rossignol S. Understanding the Formation of Geopolymer Foams: Influence of the Additives. Ceram. Mod. Technol. 2019;1:163–172. doi: 10.29272/cmt.2019.0006. DOI
Łach M., Pławecka K., Bąk A., Lichocka K., Korniejenko K., Cheng A., Lin W.T. Determi-nation of the Influence of Hydraulic Additives on the Foaming Process and Stability of the Produced Geopolymer Foams. Materials. 2021;14:5090. doi: 10.3390/ma14175090. PubMed DOI PMC
van Su L., Louda P., Nam T.H., Dong N.P., Bakalova T., Buczkowska K., Dufkova I. Study on Temperature-Dependent Properties and Fire Resistance of Metakaolin-Based Geopolymer Foams. Polymers. 2020;12:2994. PubMed PMC
Łach M., Korniejenko K., Mikuła J. Thermal Insulation and Thermally Resistant Materials Made of Geopolymer Foams. Procedia Eng. 2016;151:410–416. doi: 10.1016/j.proeng.2016.07.350. DOI
van Su L. Thermal Conductivity of Reinforced Geopolymer Foams. Ceram. Silik. 2019;63:1–9.
Krishna R.S., Mishra J., Zribi M., Adeniyi F.I., Saha S., Baklouti S., Shaikh F.U.A., Gökçe H.S. A review on developments of environmentally friendly geopolymer technology. Materialia. 2020;20:101212. doi: 10.1016/j.mtla.2021.101212. DOI
Ercoli R., Orlando A., Borrini D., Tassi F., Bicocchi G., Renzulli A. Hydrogen-Rich Gas Produced by the Chemical Neu-tralization of Reactive By-Products from the Screening Processes of the Secondary Aluminum Industry. Sustainability. 2021;13:12261. doi: 10.3390/su132112261. DOI
Li Y., Qin Z., Li C., Qu Y., Wang H., Peng L., Wang Y. Hazardous characteristics and transformation mechanism in hydrometallurgical disposing strategy of secondary aluminum dross. J. Environ. Chem. Eng. 2021;9:106470. doi: 10.1016/j.jece.2021.106470. DOI
Orveillon G., Garbarino E., Saveyn H. Waste Disposal. European Commission; Brussels, Belgium: 2021. JRC125415.
Gabitov R., Kolibaba O., Artemyeva V., Aksenchik K. Cherepovets State University Experimental study of solid waste oxidative pyrolysis. Vestnik IGEU. 2017:14–19. doi: 10.17588/2072-2672.2017.3.014-019. DOI
Mejia R., Villaquirán-Caicedo M.A. Mechanical, physical, and thermoacoustic properties of lightweight composite geopolymers. Ing. Compet. 2021 in press.
Katarzyna B., Le C.H., Louda P., Michał S., Bakalova T., Tadeusz P., Prałat K. The Fabrication of Geopolymer Foam Composites Incorporating Coke Dust Waste. Processes. 2020;8:1052. doi: 10.3390/pr8091052. DOI
Xingyi Z., Li W., Du Z., Zhou S., Zhang Y., Li F. Recycling and utilization assessment of steel slag in metakaolin based geopolymer from steel slag by-product to green geopolymer. Constr. Build. Mater. 2021;305:124654.
Tsaousi G.-M., Panias D. Production, Properties and Performance of Slag-Based, Geopolymer Foams. Minerals. 2021;11:732. doi: 10.3390/min11070732. DOI
Kozub B., Bazan P., Gailitis R., Korniejenko K., Mierzwiński D. Foamed Geopolymer Composites with the Addition of Glass Wool Waste. Materials. 2021;14:4978. doi: 10.3390/ma14174978. PubMed DOI PMC
Hajimohammadi A., Ngo T., Mendis P., Sanjayan J. Regulating the chemical foaming reaction to control the porosity of geopolymer foams. Mater. Des. 2017;120:255–265. doi: 10.1016/j.matdes.2017.02.026. DOI
Eliche-Quesada D., Ruiz-Molina S., Pérez-Villarejo L., Castro E., Sánchez-Soto P.J. Dust filter of secondary al-uminium industry as raw material of geopolymer foams. J. Build. Eng. 2020;32:101656. doi: 10.1016/j.jobe.2020.101656. DOI
Clausi M., Tarantino S.C., Magnani L.L., Riccardi M.P., Tedeschi C., Zema M. Metakaolin as a precursor of materials for applications in Cultural Heritage: Geopolymer-based mortars with ornamental stone aggregates. Appl. Clay Sci. 2016;132–133:589–599. doi: 10.1016/j.clay.2016.08.009. DOI
Hermann E., Kunze C., Gatzweiler R., Kießig G., Davidovits J. Solidification of various radioactive residues by Gèoplymère with special emphasis on long-term-stability. Gèopolymère ‘99 Proc. 1999. [(accessed on 31 January 2022)]. Available online: https://www.geopolymer.org/wp-content/uploads/SOLIDRAD.pdf.
Davidovits J. Application of Ca-Based Geopolymer with Blast Furnace Slag, a Review; Proceedings of the 2nd International Slag Valorisation Symposium; Leuven, Belgium. 18–20 April 2011; pp. 33–49.
Fernández-Jiménez A., Palomo A., Criado M. Alkali activated fly ash binders. A comparative study between sodium and potassium activators. Mater. De Constr. 2006;56:51–65.
Davidovits J. Geopolymers: Ceramic-like inorganic polymers. J. Ceram. Sci. Technol. 2017;8:335–350.
Davidovits J. Geopolymer Chemistry and Applications. 5th ed. Institut Géopolymère; Saint-Quentin, France: 2020.
Weng L., Sagoe-Crentsil K., Brown T., Song S. Effects of Aluminosilicates on the Formation of Geopolymers. Mat. Sci. Eng. 2005;117:163–168. doi: 10.1016/j.mseb.2004.11.008. DOI
Davidovits J., Buzzi L., Rocher P., Gimeno D., Marini C., Tocco S. Geopolymeric Cement Based on Low Cost Geologic Material, Results from the European Research Project GEOCISTEM. [(accessed on 31 January 2022)]. Available online: https://www.researchgate.net/publication/284757919_Geopolymeric_cement_based_on_low_cost_geologic_material_results_from_the_European_Research_project_GEOCISTEM.
Palomo A., Glasser F. Chemically-bonded cementitious materials based on metakaolin. Ceram. Trans. 1992;91:107–112.
Duxson P., Lukey G.C., Van De Venter J.S.J., Mallicoat S.W., Kriven W. Microstructural Characterization of Metakaolin-based Geopolymers. Ceram. Trans. 2005;165:71–85.
BAUCIS LK: ČLUZ a.s. [(accessed on 31 January 2022)]. Available online: https://www.cluz.cz/en/baucis-lk.
Sklopísek Střeleč a.s. [(accessed on 31 January 2022)]. Available online: https://glassand.eu/celkova-produkce/podle-druhu/technicke-pisky.
Korniejenko K., Figiela B., Miernik K., Ziejewska C., Marczyk J., Hebda M., Cheng A., Lin W.T. Mechanical and Fracture Properties of Long Fiber Reinforced Geopolymer Composites. Materials. 2021;14:5183. doi: 10.3390/ma14185183. PubMed DOI PMC
Walbrück K., Maeting F., Witzleben S., Stephan D. Natural Fiber-Stabilized Geopolymer Foams—A Review. Materials. 2020;1:3198. doi: 10.3390/ma13143198. PubMed DOI PMC
Lee J.H., Wattanasiriwech S., Wattanasiriwech D. Preparation of Carbon Fiber Reinforced Metakaolin Based-Geopolymer Foams. Key Eng. Mater. 2018;766:19–27. doi: 10.4028/www.scientific.net/KEM.766.19. DOI
Nguyen S., Louda P., Katarzyna B., Roberto E., Piotr L. Enhancing Geopolymer Composites by Recycled Fibers. Geopolymer Institute; Saint-Quentin, France: 2021.
Padamata S.K., Yasinskiy A., Polyakov P.V. A Review of Secondary Aluminum Production and Its Byproducts. JOM. 2021;73:2603–2614. doi: 10.1007/s11837-021-04802-y. DOI
Jafari N.H., Stark T.D., Roper R. Classification and Reactivity of Secondary Aluminum Production Waste. J. Hazard. Toxic Radioact. Waste. 2014;18:04014018. doi: 10.1061/(ASCE)HZ.2153-5515.0000223. DOI
Asur Marche. [(accessed on 31 January 2022)]. Available online: https://serviziweb.asur.marche.it/ALBI/AV1/determine/2015/20151014_111048_875-AV1-14-10-2015.rtf.
EUR-Lex Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control) [(accessed on 31 January 2022)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0075.
European Parliament. [(accessed on 31 January 2022)]. Available online: https://www.europarl.europa.eu/RegData/etudes/etudes/join/2006/375865/IPOL-ENVI_ET.
EUR-Lex. [(accessed on 5 March 2021)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008R1272.
EUR-Lex. [(accessed on 31 January 2022)]. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:32014R1357&from=DA.
Gasparini E., Tarantino S.C., Conti M., Biesuz R., Ghigna P., Auricchio F., Riccardi M.P., Zema M. Geopolymers from low-T activated kaolin: Implications for the use of alunite-bearing raw materials. Appl. Clay Sci. 2015;114:530–539. doi: 10.1016/j.clay.2015.06.040. DOI
Lermen R.T., Korf E.M., De Oliveira L.N., De Oliveira R.N., Dos Santos Neto D.D., Silva R. Evaluation of the properties of a foamed geopolymer developed with different types of metakaolin. Ceramica. 2021;67:12. doi: 10.1590/0366-69132021673823004. DOI
Nguyen V.V., Le V.S., Louda P., Szczypiński M.M., Ercoli R., Růžek V., Łoś P., Prałat K., Plaskota P., Pacyniak T., et al. Low-Density Geopolymer Composites for the Construction Industry. Polymers. 2022;14:304. doi: 10.3390/polym14020304. PubMed DOI PMC
European Standards. [(accessed on 31 January 2022)]. Available online: https://www.en-standard.eu/bs-en-12390-3-2019-testing-hardened-concrete-compressive-strength-of-test-specimens/
UNI. [(accessed on 31 January 2022)]. Available online: http://store.uni.com/catalogo/uni-en-10002-1-2004.
UNI. [(accessed on 31 January 2022)]. Available online: http://store.uni.com/catalogo/en-196-1-2016.
UNI. [(accessed on 31 January 2022)]. Available online: http://store.uni.com/catalogo/en-iso-148-1-2010.
AST International. [(accessed on 31 January 2022)]. Available online: https://www.astm.org/d5334-08.html#:~:text=ASTM%20D5334%20%2D%2008%20Standard%20Test,by%20Thermal%20Needle%20Probe%20Procedure.
Maleki N., Haghighi B. Design of a Simple and Stand-alone RS-232c Interface. J. Chem. Educ. 1995;72:A78. doi: 10.1021/ed072pA78.2. DOI
Dudek E., Mosiadz M., Orzepowski M. Uncertainties of resistors temperature coefficients. Meas. Sci. Rev. 2007;7:23–26.
Kušnerová M., Valíček J., Harničárová M., Hryniewicz T., Rokosz K., Palková Z., Václavík V., Řepka M., Bendová M. A proposal for simplifying the method of evaluation of uncertainties in measurement results. Meas. Sci. Rev. 2013;13:1–6. doi: 10.2478/msr-2013-0007. DOI
Prałat K., Ciemnicka J., Koper A., Buczkowska K., Łoś P. Comparison of the Thermal Properties of Geopolymer and Modified Gypsum. Polymers. 2021;13:1220. doi: 10.3390/polym13081220. PubMed DOI PMC
Prałat K., Jaskulski R., Ciemnicka J., Makomaski G. Analysis of the thermal properties and structure of gypsum modified with cellulose based polymer and aerogels. Arch. Civ. Eng. 2020;66:135214. doi: 10.24425/ace.2020.135214. DOI
European Standards. [(accessed on 31 January 2022)]. Available online: https://www.en-standard.eu/bs-en-1936-2006-natural-stone-test-methods-determination-of-real-density-and-apparent-density-and-of-total-and-open-porosity/
Prałat K., Łukasiewicz M., Miczko P. Experimental study of the basic mechanical properties of hardened gypsum paste modified with addition of polyoxymethylene micrograins. Arch. Civ. Eng. 2020;66:385–397.
Rozyanty A.R. Mineral-Filled Polymer Composites. CRC Press; Boca Raton, FL, USA: 2021. Mechanical Properties of Geopolymer Filler in Polymer Composites.
Koper A., Prałat K., Ciemnicka J., Buczkowska K. Influence of the Calcination Temperature of Synthetic Gypsum on the Particle Size Distribution and Setting Time of Modified Building Materials. Energies. 2020;13:5759. doi: 10.3390/en13215759. DOI
Prałat K., Krymarys E. A particle size distribution measurements of selected building materials using laser diffraction method. Tech. Trans. 2018;11:95–108.
Walbrück K., Drewler L., Witzleben S., Stephan D. Factors influencing thermal conductivity and compressive strength of natural fiber-reinforced geopolymer foams. Open Ceram. 2021;5:100065. doi: 10.1016/j.oceram.2021.100065. DOI
Ji Z., Li M., Su L., Pei Y. Porosity, mechanical strength and structure of waste-based geopolymer foams by different stabilizing agents. Constr. Build. Mater. 2020;258:119555. doi: 10.1016/j.conbuildmat.2020.119555. DOI
Zhang Z., Wang H. The Pore Characteristics of Geopolymer Foam Concrete and Their Impact on the Compressive Strength and Modulus. Front. Mater. 2016;3:38. doi: 10.3389/fmats.2016.00038. DOI
Bai C., Franchin G., Elsayed H., Zaggia A., Conte L., Li H., Colombo P. High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment. J. Mater. Res. 2017;32:1–9. doi: 10.1557/jmr.2017.127. DOI
Jaya N.A., Ming L.Y., Yong H.C., Abdullah M.M.a., Kamarudin H. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Constr. Build. Mater. 2020;247:118641. doi: 10.1016/j.conbuildmat.2020.118641. DOI