Optimizing the Composition of Geopolymer Composites Incorporating Secondary Aluminium Industry By-Products Using Mathematical Modelling

. 2025 Jun 16 ; 18 (12) : . [epub] 20250616

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40572971

Geopolymer composite materials are a viable alternative to conventional construction materials. The research problem of geopolymer composites revolves around the imperative to comprehensively address their synthesis, structural performance, and environmental impact. The derived mathematical model facilitates precisely determining the optimal proportions of two crucial constituents in the geopolymer matrix: silica sand and secondary aluminum by-product. A mathematical model for optimizing the composition of geopolymer composites has been developed based on the integrated use of Markov chains, criterion methods, and an orthogonally compositional plan. The optimal composition of the geopolymer matrix is determined and predicted using a mathematical model. Specifically, the recommended content mixing ratio is as follows: metakaolin at 1000 g, activator at 900 g, silica fume at 1052.826 g, carbon fibre at 10 g, and secondary aluminum by-product at 62.493 g. This study analyzes the influence of different secondary aluminum industry by-products on the geopolymerization process and assesses the mechanical, thermal, and environmental properties of the resulting composites to establish a comprehensive understanding of their structural viability.

Zobrazit více v PubMed

Rodríguez Espejel K., Pérez Bueno J.d.J., Magdaleno López C., Mendoza López M.L., Algara Siller M., Reyes Araiza J.L., Manzano-Ramírez A., Morales Hernández J. Geopolymeric Composite Materials Made of Sol-Gel Silica and Agroindustrial Wastes of Rice, Barley, and Coffee Husks with Wood-Like Finishing. Sustainability. 2022;14:16689. doi: 10.3390/su142416689. DOI

Zhang P., Wei S., Zheng Y., Wang F., Hu S. Effect of single and synergistic reinforcement of PVA fiber and nano-SiO2 on workability and compressive strength of geopolymer composites. Polymers. 2022;14:3765. doi: 10.3390/polym14183765. PubMed DOI PMC

Benhelal E., Zahedi G., Shamsaei E., Bahadori A. Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 2013;51:142–161. doi: 10.1016/j.jclepro.2012.10.049. DOI

Panigrahi M., Ganguly R.I., Dash R.R. Development of Geopolymer from Pond Ash Thermal Power Plant Waste: Novel Constructional Materials for Civil Engineers. Wiley; Hoboken, NJ, USA: 2023. Fundamentals of Geopolymer Cementitious Materials; pp. 71–89.

Zhao D., Li Q., Guo L., Yue C., Yang J., Wang Y., Li H. Transparent self-healing luminescent elastomer with superior stretchability achieved via dynamic hard domain design. Chem. Eng. J. 2023;468:143418. doi: 10.1016/j.cej.2023.143418. DOI

Drabczyk A., Kudłacik-Kramarczyk S., Korniejenko K., Figiela B., Furtos G. Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development. Materials. 2023;16:3478. doi: 10.3390/ma16093478. PubMed DOI PMC

Archez J., Farges R., Gharzouni A., Rossignol S. Influence of the geopolymer formulation on the endogeneous shrinkage. Constr. Build. Mater. 2021;298:123813. doi: 10.1016/j.conbuildmat.2021.123813. DOI

Ali M.B., Saidur R., Hossain M.S. A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 2011;15:2252–2261. doi: 10.1016/j.rser.2011.02.014. DOI

Le S., Luda P. Research of curing time and temperature-dependent strengths and fire resistance of geopolymer form coated on an aluminum plate. Coatings. 2021;11:87. doi: 10.3390/coatings11010087. DOI

Ercoli R., Laskowska D., Nguyen V.V., Le V.S., Louda P., Łoś P., Ciemnicka J., Prałat K., Renzulli A., Paris E. Mechanical and thermal properties of geopolymer foams (GFs) doped with by-products of the secondary aluminum industry. Polymers. 2022;14:703. doi: 10.3390/polym14040703. PubMed DOI PMC

Bijeljić J., Stojković N., Mišić J. Usage of Red Mud in Geopolymer Mortar Mixtures. Knowl.-Int. J. 2022;54:541–546. doi: 10.35120/kij5403541b. DOI

Sharko A.V., Botaki A.A. Temperature dependence of the elastic constants and Debye temperatures of NaCl and KCl single crystals. Sov. Phys. J. 1970;13:708–712. doi: 10.1007/BF00836685. DOI

Botaki A.A., Gyrbu I.N., Sharko A.V. Temperature variations in elastic constants and Debye temperature of single crystals of a KBr-KI solid solution. Sov. Phys. J. 1972;15:917–919. doi: 10.1007/BF00912244. DOI

Tang Y., Shu J., Li W., He Y., Yang Y., Sun P. Quantitative risk evaluation model of the multilevel complex structure hierarchical system in the petrochemical industry. Math. Probl. Eng. 2019;2019:9328634. doi: 10.1155/2019/9328634. DOI

Xu J., Guo L., Zhang R., Hu H., Wang F., Pei Z. QoS-aware service composition using fuzzy set theory and genetic algorithm. Wirel. Pers. Commun. 2018;102:1009–1028. doi: 10.1007/s11277-017-5129-8. DOI

Boldyrev A.V., Kozlov D.M., Pavelchuk M.V. Evaluation of anisogrid composite lattice structures weight effectiveness using the load-carrying factor. Procedia Eng. 2017;185:153–159. doi: 10.1016/j.proeng.2017.03.333. DOI

Kariminejad M., Tormey D., Ryan C., O’Hara C., Weinert A., McAfee M. Single and multi-objective real-time optimisation of an industrial injection moulding process via a Bayesian adaptive design of experiment approach. Sci. Rep. 2024;14:29799. doi: 10.1038/s41598-024-80405-2. PubMed DOI PMC

Mandal P., Mondal S., Cep R., Ghadai R.K. Multi-objective optimization of an EDM process for Monel K-500 alloy using response surface methodology-multi-objective dragonfly algorithm. Sci. Rep. 2024;14:20757. doi: 10.1038/s41598-024-71697-5. PubMed DOI PMC

Wang S., Zhang X. Production scheduling of prefabricated components considering delivery methods. Sci. Rep. 2023;13:15094. doi: 10.1038/s41598-023-42374-w. PubMed DOI PMC

Duan X., George M., Bullo F. Markov chains with maximum return time entropy for robotic surveillance. IEEE Trans. Autom. Contr. 2019;65:72–86. doi: 10.1109/TAC.2019.2906473. DOI

Hadigheh S., Ke F., Fatemi H. Durability design criteria for the hybrid carbon fibre reinforced polymer (CFRP)-reinforced geopolymer concrete bridges. Structures. 2022;35:325–339. doi: 10.1016/j.istruc.2021.10.087. DOI

Ludwig R., Pouymayou B., Balermpas P., Unkelbach J. A hidden Markov model for lymphatic tumor progression in the head and neck. Sci. Rep. 2021;11:12261. doi: 10.1038/s41598-021-91544-1. PubMed DOI PMC

Odhiambo J., Weke P., Ngare P. Modeling Kenyan economic impact of corona virus in Kenya using discrete-time Markov chains. J. Financ. Econ. 2020;8:80–85.

Nosov P., Ben A., Zinchenko S., Popovych I., Mateichuk V., Nosova H. Formal Approaches to Identify Cadet Fatigue Factors by Means of Marine Navigation Simulators; Proceedings of the ICTERI Workshops; Kharkiv, Ukraine. 16–20 October 2020; pp. 823–838.

Sandanayake M., Gunasekara C., Law D., Zhang G., Setunge S., Wanijuru D. Sustainable criterion selection framework for green building materials—An optimisation based study of fly-ash Geopolymer concrete. Sustain. Mater. Technol. 2020;25:e00178. doi: 10.1016/j.susmat.2020.e00178. DOI

Wang L., Laird-Fick H.S., Parker C.J., Solomon D. Using Markov chain model to evaluate medical students’ trajectory on progress tests and predict USMLE step 1 scores—A retrospective cohort study in one medical school. BMC Med. Educ. 2021;21:200. doi: 10.1186/s12909-021-02633-8. PubMed DOI PMC

Li F., Liu L., Yang Z., Li S. Physical and mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste Granulated Blast Furnace Slag (GBFS) and functionalized Multi-Walled Carbon Nanotubes (MWCNTs) J. Hazard. Mater. 2021;401:123339. doi: 10.1016/j.jhazmat.2020.123339. PubMed DOI

Mustakim S.M., Das S.K., Mishra J., Aftab A., Alomayri T.S., Assaedi H.S., Kaze C.R. Improvement in Fresh, Mechanical and Microstructural Properties of Fly Ash-Blast Furnace Slag Based Geopolymer Concrete by Addition of Nano and Micro Silica. Silicon. 2021;13:2415–2428. doi: 10.1007/s12633-020-00593-0. DOI

Kussmaul R., Zogg M., Ermanni P. An optimality criteria-based algorithm for efficient design optimization of laminated composites using concurrent resizing and scaling. Struct. Multidiscip. Optim. 2018;58:735–750. doi: 10.1007/s00158-018-1927-1. DOI

Raskin L., Sira O. Development of modern models and methods of the theory of statistical hypothesis testing. East Eur. J. Adv. Technol. 2020;5:11–18. doi: 10.15587/1729-4061.2020.214718. DOI

Edelkamp S. Taming Numbers and Durations in the Model Checking Integrated Planning System. arXiv. 2011 doi: 10.1613/jair.1302.1107.0025 DOI

Marasanov V., Stepanchikov D., Sharko A., Sharko A. Operator of the dynamic process of the appearance of acoustic emission signals during deforming the structure of materials; Proceedings of the 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO); Kyiv, Ukraine. 22–24 April 2020; pp. 646–650.

Louda P., Marasanov V., Sharko A., Stepanchikov D., Sharko A. The Theory of Similarity and Analysis of Dimensions for Determining the State of Operation of Structures under Difficult Loading Conditions. Materials. 2022;15:1191. doi: 10.3390/ma15031191. PubMed DOI PMC

Buketov A.V., Sharko A.V., Zinchenko D.A., Stepanchikov D.M. To the problem of ingredients optimization of composite materials based on epoxy resin. Bull. Karaganda Univ.-Math. 2017;86:37–44. doi: 10.31489/2017M2/37-44. PubMed DOI PMC

Sharko A., Louda P., Nguyen V.V., Buczkowska K.E., Stepanchikov D., Ercoli R., Kascak P., Le V.S. Multicriteria Assessment for Calculating the Optimal Content of Calcium-Rich Fly Ash in Metakaolin-Based Geopolymers. Ceramics. 2023;6:525–537. doi: 10.3390/ceramics6010031. DOI

Sharko A., Sharko O., Stepanchikov D., Ercoli R., Nguyen T.X., Tran D.H., Buczkowska K.E., Dancova P., Łos P., Louda P. Multi-criteria optimization of geopolymer foam composition. J. Mater. Res. Technol. 2023;26:9049–9062.

Bandaru S.K., Seshu D. R. Study on fly ash and GGBS based geopolymer corbels. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.05.303. DOI

Wang Q., Guo H., Yu T., Yuan P., Deng L., Zhang B. Utilization of Calcium Carbide Residue as Solid Alkali for Preparing Fly Ash-Based Geopolymers: Dependence of Compressive Strength and Microstructure on Calcium Carbide Residue, Water Content and Curing Temperature. Materials. 2022;15:973. doi: 10.3390/ma15030973. PubMed DOI PMC

Bhattarai S.R., Adesina M., Akbari A. Geopolymers as Sustainable Materials: A Short Review. J. Build. Archit. 2025;2:2935.

Kim K., Song H., Lee S., Cho H., Lim H.M., Ko H. Accentuating the ambient curing behavior of geopolymers: Metamodel-guided optimization for fast-curing geopolymers with high flexural strength. Digit. Discov. 2025;4:653–665. doi: 10.1039/D4DD00217B. DOI

Li P., Luo S., Wang Y., Zhang L., Wang H., Teng F. Mix design and mechanical properties of geopolymer building material using iron ore mine tailings. Renew. Sustain. Energy Rev. 2025;211:115274. doi: 10.1016/j.rser.2024.115274. DOI

Crîstiu D., d’Amore F., Bezzo F. Optimal design of sustainable supply chains for critical raw materials recycling in renewable energy technologies. Resour. Conserv. Recycl. 2025;218:108250. doi: 10.1016/j.resconrec.2025.108250. DOI

Palma G., Bolaños H., Huamani R., Clements C., Hedayat A. Optimization of Geopolymers for Sustainable Management of Mine Tailings: Impact on Mechanical, Microstructural, and Toxicological Properties. Minerals. 2024;14:997. doi: 10.3390/min14100997. DOI

Sumabata A.K.R., Mañalaca A.J., Nguyena H.T., Kalawb M.E., Tana R.R., Promentilla M.A.B. Optimizing Geopolymer-Based Material for Industrial Application with Analytic Hierarchy Process and Multi-Response Surface Analysis. Chem. Eng. Trans. 2015;45:1147–1152. doi: 10.3303/CET1545192. DOI

Metallic Materials—Tensile Testing—Method of Test at Ambient Temperature. UNI (Ente Nazionale Italiano di Unificazione); Milan, Italy: 2004.

Methods of Testing Cement—Determination of Strength. SIST (Slovenian Institute for Standardization); Ljubljana, Slovenia: 2016.

Metallic Materials—Charpy Pendulum Impact Test—Part 1: Test Method (ISO 148-1:2016) ISO (International Organization for Standardization); Geneva, Switzerland: 2016.

Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. ASTM International (American Society for Testing and Materials); West Conshohocken, PA, USA: 2008.

Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity. ISO (International Organization for Standardization); Geneva, Switzerland: 2006.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...