Optimizing the Composition of Geopolymer Composites Incorporating Secondary Aluminium Industry By-Products Using Mathematical Modelling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40572971
PubMed Central
PMC12195140
DOI
10.3390/ma18122840
PII: ma18122840
Knihovny.cz E-zdroje
- Klíčová slova
- composition, geopolymers, optimization, properties, renewable raw materials, structure, technology,
- Publikační typ
- časopisecké články MeSH
Geopolymer composite materials are a viable alternative to conventional construction materials. The research problem of geopolymer composites revolves around the imperative to comprehensively address their synthesis, structural performance, and environmental impact. The derived mathematical model facilitates precisely determining the optimal proportions of two crucial constituents in the geopolymer matrix: silica sand and secondary aluminum by-product. A mathematical model for optimizing the composition of geopolymer composites has been developed based on the integrated use of Markov chains, criterion methods, and an orthogonally compositional plan. The optimal composition of the geopolymer matrix is determined and predicted using a mathematical model. Specifically, the recommended content mixing ratio is as follows: metakaolin at 1000 g, activator at 900 g, silica fume at 1052.826 g, carbon fibre at 10 g, and secondary aluminum by-product at 62.493 g. This study analyzes the influence of different secondary aluminum industry by-products on the geopolymerization process and assesses the mechanical, thermal, and environmental properties of the resulting composites to establish a comprehensive understanding of their structural viability.
Zobrazit více v PubMed
Rodríguez Espejel K., Pérez Bueno J.d.J., Magdaleno López C., Mendoza López M.L., Algara Siller M., Reyes Araiza J.L., Manzano-Ramírez A., Morales Hernández J. Geopolymeric Composite Materials Made of Sol-Gel Silica and Agroindustrial Wastes of Rice, Barley, and Coffee Husks with Wood-Like Finishing. Sustainability. 2022;14:16689. doi: 10.3390/su142416689. DOI
Zhang P., Wei S., Zheng Y., Wang F., Hu S. Effect of single and synergistic reinforcement of PVA fiber and nano-SiO2 on workability and compressive strength of geopolymer composites. Polymers. 2022;14:3765. doi: 10.3390/polym14183765. PubMed DOI PMC
Benhelal E., Zahedi G., Shamsaei E., Bahadori A. Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 2013;51:142–161. doi: 10.1016/j.jclepro.2012.10.049. DOI
Panigrahi M., Ganguly R.I., Dash R.R. Development of Geopolymer from Pond Ash Thermal Power Plant Waste: Novel Constructional Materials for Civil Engineers. Wiley; Hoboken, NJ, USA: 2023. Fundamentals of Geopolymer Cementitious Materials; pp. 71–89.
Zhao D., Li Q., Guo L., Yue C., Yang J., Wang Y., Li H. Transparent self-healing luminescent elastomer with superior stretchability achieved via dynamic hard domain design. Chem. Eng. J. 2023;468:143418. doi: 10.1016/j.cej.2023.143418. DOI
Drabczyk A., Kudłacik-Kramarczyk S., Korniejenko K., Figiela B., Furtos G. Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development. Materials. 2023;16:3478. doi: 10.3390/ma16093478. PubMed DOI PMC
Archez J., Farges R., Gharzouni A., Rossignol S. Influence of the geopolymer formulation on the endogeneous shrinkage. Constr. Build. Mater. 2021;298:123813. doi: 10.1016/j.conbuildmat.2021.123813. DOI
Ali M.B., Saidur R., Hossain M.S. A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 2011;15:2252–2261. doi: 10.1016/j.rser.2011.02.014. DOI
Le S., Luda P. Research of curing time and temperature-dependent strengths and fire resistance of geopolymer form coated on an aluminum plate. Coatings. 2021;11:87. doi: 10.3390/coatings11010087. DOI
Ercoli R., Laskowska D., Nguyen V.V., Le V.S., Louda P., Łoś P., Ciemnicka J., Prałat K., Renzulli A., Paris E. Mechanical and thermal properties of geopolymer foams (GFs) doped with by-products of the secondary aluminum industry. Polymers. 2022;14:703. doi: 10.3390/polym14040703. PubMed DOI PMC
Bijeljić J., Stojković N., Mišić J. Usage of Red Mud in Geopolymer Mortar Mixtures. Knowl.-Int. J. 2022;54:541–546. doi: 10.35120/kij5403541b. DOI
Sharko A.V., Botaki A.A. Temperature dependence of the elastic constants and Debye temperatures of NaCl and KCl single crystals. Sov. Phys. J. 1970;13:708–712. doi: 10.1007/BF00836685. DOI
Botaki A.A., Gyrbu I.N., Sharko A.V. Temperature variations in elastic constants and Debye temperature of single crystals of a KBr-KI solid solution. Sov. Phys. J. 1972;15:917–919. doi: 10.1007/BF00912244. DOI
Tang Y., Shu J., Li W., He Y., Yang Y., Sun P. Quantitative risk evaluation model of the multilevel complex structure hierarchical system in the petrochemical industry. Math. Probl. Eng. 2019;2019:9328634. doi: 10.1155/2019/9328634. DOI
Xu J., Guo L., Zhang R., Hu H., Wang F., Pei Z. QoS-aware service composition using fuzzy set theory and genetic algorithm. Wirel. Pers. Commun. 2018;102:1009–1028. doi: 10.1007/s11277-017-5129-8. DOI
Boldyrev A.V., Kozlov D.M., Pavelchuk M.V. Evaluation of anisogrid composite lattice structures weight effectiveness using the load-carrying factor. Procedia Eng. 2017;185:153–159. doi: 10.1016/j.proeng.2017.03.333. DOI
Kariminejad M., Tormey D., Ryan C., O’Hara C., Weinert A., McAfee M. Single and multi-objective real-time optimisation of an industrial injection moulding process via a Bayesian adaptive design of experiment approach. Sci. Rep. 2024;14:29799. doi: 10.1038/s41598-024-80405-2. PubMed DOI PMC
Mandal P., Mondal S., Cep R., Ghadai R.K. Multi-objective optimization of an EDM process for Monel K-500 alloy using response surface methodology-multi-objective dragonfly algorithm. Sci. Rep. 2024;14:20757. doi: 10.1038/s41598-024-71697-5. PubMed DOI PMC
Wang S., Zhang X. Production scheduling of prefabricated components considering delivery methods. Sci. Rep. 2023;13:15094. doi: 10.1038/s41598-023-42374-w. PubMed DOI PMC
Duan X., George M., Bullo F. Markov chains with maximum return time entropy for robotic surveillance. IEEE Trans. Autom. Contr. 2019;65:72–86. doi: 10.1109/TAC.2019.2906473. DOI
Hadigheh S., Ke F., Fatemi H. Durability design criteria for the hybrid carbon fibre reinforced polymer (CFRP)-reinforced geopolymer concrete bridges. Structures. 2022;35:325–339. doi: 10.1016/j.istruc.2021.10.087. DOI
Ludwig R., Pouymayou B., Balermpas P., Unkelbach J. A hidden Markov model for lymphatic tumor progression in the head and neck. Sci. Rep. 2021;11:12261. doi: 10.1038/s41598-021-91544-1. PubMed DOI PMC
Odhiambo J., Weke P., Ngare P. Modeling Kenyan economic impact of corona virus in Kenya using discrete-time Markov chains. J. Financ. Econ. 2020;8:80–85.
Nosov P., Ben A., Zinchenko S., Popovych I., Mateichuk V., Nosova H. Formal Approaches to Identify Cadet Fatigue Factors by Means of Marine Navigation Simulators; Proceedings of the ICTERI Workshops; Kharkiv, Ukraine. 16–20 October 2020; pp. 823–838.
Sandanayake M., Gunasekara C., Law D., Zhang G., Setunge S., Wanijuru D. Sustainable criterion selection framework for green building materials—An optimisation based study of fly-ash Geopolymer concrete. Sustain. Mater. Technol. 2020;25:e00178. doi: 10.1016/j.susmat.2020.e00178. DOI
Wang L., Laird-Fick H.S., Parker C.J., Solomon D. Using Markov chain model to evaluate medical students’ trajectory on progress tests and predict USMLE step 1 scores—A retrospective cohort study in one medical school. BMC Med. Educ. 2021;21:200. doi: 10.1186/s12909-021-02633-8. PubMed DOI PMC
Li F., Liu L., Yang Z., Li S. Physical and mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste Granulated Blast Furnace Slag (GBFS) and functionalized Multi-Walled Carbon Nanotubes (MWCNTs) J. Hazard. Mater. 2021;401:123339. doi: 10.1016/j.jhazmat.2020.123339. PubMed DOI
Mustakim S.M., Das S.K., Mishra J., Aftab A., Alomayri T.S., Assaedi H.S., Kaze C.R. Improvement in Fresh, Mechanical and Microstructural Properties of Fly Ash-Blast Furnace Slag Based Geopolymer Concrete by Addition of Nano and Micro Silica. Silicon. 2021;13:2415–2428. doi: 10.1007/s12633-020-00593-0. DOI
Kussmaul R., Zogg M., Ermanni P. An optimality criteria-based algorithm for efficient design optimization of laminated composites using concurrent resizing and scaling. Struct. Multidiscip. Optim. 2018;58:735–750. doi: 10.1007/s00158-018-1927-1. DOI
Raskin L., Sira O. Development of modern models and methods of the theory of statistical hypothesis testing. East Eur. J. Adv. Technol. 2020;5:11–18. doi: 10.15587/1729-4061.2020.214718. DOI
Edelkamp S. Taming Numbers and Durations in the Model Checking Integrated Planning System. arXiv. 2011 doi: 10.1613/jair.1302.1107.0025 DOI
Marasanov V., Stepanchikov D., Sharko A., Sharko A. Operator of the dynamic process of the appearance of acoustic emission signals during deforming the structure of materials; Proceedings of the 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO); Kyiv, Ukraine. 22–24 April 2020; pp. 646–650.
Louda P., Marasanov V., Sharko A., Stepanchikov D., Sharko A. The Theory of Similarity and Analysis of Dimensions for Determining the State of Operation of Structures under Difficult Loading Conditions. Materials. 2022;15:1191. doi: 10.3390/ma15031191. PubMed DOI PMC
Buketov A.V., Sharko A.V., Zinchenko D.A., Stepanchikov D.M. To the problem of ingredients optimization of composite materials based on epoxy resin. Bull. Karaganda Univ.-Math. 2017;86:37–44. doi: 10.31489/2017M2/37-44. PubMed DOI PMC
Sharko A., Louda P., Nguyen V.V., Buczkowska K.E., Stepanchikov D., Ercoli R., Kascak P., Le V.S. Multicriteria Assessment for Calculating the Optimal Content of Calcium-Rich Fly Ash in Metakaolin-Based Geopolymers. Ceramics. 2023;6:525–537. doi: 10.3390/ceramics6010031. DOI
Sharko A., Sharko O., Stepanchikov D., Ercoli R., Nguyen T.X., Tran D.H., Buczkowska K.E., Dancova P., Łos P., Louda P. Multi-criteria optimization of geopolymer foam composition. J. Mater. Res. Technol. 2023;26:9049–9062.
Bandaru S.K., Seshu D. R. Study on fly ash and GGBS based geopolymer corbels. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.05.303. DOI
Wang Q., Guo H., Yu T., Yuan P., Deng L., Zhang B. Utilization of Calcium Carbide Residue as Solid Alkali for Preparing Fly Ash-Based Geopolymers: Dependence of Compressive Strength and Microstructure on Calcium Carbide Residue, Water Content and Curing Temperature. Materials. 2022;15:973. doi: 10.3390/ma15030973. PubMed DOI PMC
Bhattarai S.R., Adesina M., Akbari A. Geopolymers as Sustainable Materials: A Short Review. J. Build. Archit. 2025;2:2935.
Kim K., Song H., Lee S., Cho H., Lim H.M., Ko H. Accentuating the ambient curing behavior of geopolymers: Metamodel-guided optimization for fast-curing geopolymers with high flexural strength. Digit. Discov. 2025;4:653–665. doi: 10.1039/D4DD00217B. DOI
Li P., Luo S., Wang Y., Zhang L., Wang H., Teng F. Mix design and mechanical properties of geopolymer building material using iron ore mine tailings. Renew. Sustain. Energy Rev. 2025;211:115274. doi: 10.1016/j.rser.2024.115274. DOI
Crîstiu D., d’Amore F., Bezzo F. Optimal design of sustainable supply chains for critical raw materials recycling in renewable energy technologies. Resour. Conserv. Recycl. 2025;218:108250. doi: 10.1016/j.resconrec.2025.108250. DOI
Palma G., Bolaños H., Huamani R., Clements C., Hedayat A. Optimization of Geopolymers for Sustainable Management of Mine Tailings: Impact on Mechanical, Microstructural, and Toxicological Properties. Minerals. 2024;14:997. doi: 10.3390/min14100997. DOI
Sumabata A.K.R., Mañalaca A.J., Nguyena H.T., Kalawb M.E., Tana R.R., Promentilla M.A.B. Optimizing Geopolymer-Based Material for Industrial Application with Analytic Hierarchy Process and Multi-Response Surface Analysis. Chem. Eng. Trans. 2015;45:1147–1152. doi: 10.3303/CET1545192. DOI
Metallic Materials—Tensile Testing—Method of Test at Ambient Temperature. UNI (Ente Nazionale Italiano di Unificazione); Milan, Italy: 2004.
Methods of Testing Cement—Determination of Strength. SIST (Slovenian Institute for Standardization); Ljubljana, Slovenia: 2016.
Metallic Materials—Charpy Pendulum Impact Test—Part 1: Test Method (ISO 148-1:2016) ISO (International Organization for Standardization); Geneva, Switzerland: 2016.
Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. ASTM International (American Society for Testing and Materials); West Conshohocken, PA, USA: 2008.
Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity. ISO (International Organization for Standardization); Geneva, Switzerland: 2006.