Study on Temperature-Dependent Properties and Fire Resistance of Metakaolin-Based Geopolymer Foams
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH04020189
thermal Nano insulation for automotive, aviation and aeronautics
PubMed
33334042
PubMed Central
PMC7765562
DOI
10.3390/polym12122994
PII: polym12122994
Knihovny.cz E-zdroje
- Klíčová slova
- basalt fiber, fire resistance, geopolymer foam, high temperature,
- Publikační typ
- časopisecké články MeSH
This paper presents temperature-dependent properties and fire resistance of geopolymer foams made of ground basalt fibers, aluminum foaming agents, and potassium-activated metakaolin-based geopolymers. Temperature-dependent properties of basalt-reinforced geopolymer foams (BGFs) were investigated by a series of measurements, including apparent density, water absorption, mass loss, drying shrinkage, compressive and flexural strengths, XRD, and SEM. Results showed that the apparent density and drying shrinkage of the BGFs increase with increasing the treated temperature from 400 to 1200 °C. Below 600 °C the mass loss is enhanced while the water absorption is reduced and they both vary slightly between 600 and 1000 °C. Above 1000 °C the mass loss is decreased rapidly, whereas the water absorption is increased. The compressive and flexural strengths of the BGFs with high fiber content are improved significantly at temperatures over 600 °C and achieved the maximum at 1200 °C. The BGF with high fiber loading at 1200 °C exhibited a substantial increase in compressive strength by 108% and flexural strength by 116% compared to that at room temperature. The enhancement in the BGF strengths at high temperatures is attributed to the development of crystalline phases and structural densification. Therefore, the BGFs with high fiber loading have extraordinary mechanical stability at high temperatures. The fire resistance of wood and steel plates has been considerably improved after coating a BGF layer on their surface. The coated BGF remained its structural integrity without any considerable macroscopic damage after fire resistance test. The longest fire-resistant times for the wood and steel plates were 99 and 134 min, respectively. In general, the BGFs with excellent fire resistance have great potential for fire protection applications.
Zobrazit více v PubMed
Davidovits J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989;35:429–441. doi: 10.1007/BF01904446. DOI
Singh B., Ishwarya G., Gupta M., Bhattacharyya S.K. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015;85:78–90. doi: 10.1016/j.conbuildmat.2015.03.036. DOI
Zhang Z., Provis J.L., Reid A., Wang H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr. Build. Mater. 2014;56:113–127. doi: 10.1016/j.conbuildmat.2014.01.081. DOI
Bai C., Colombo P. Processing, properties and applications of highly porous geopolymers: A review. Ceram. Int. 2018;44:16103–16118. doi: 10.1016/j.ceramint.2018.05.219. DOI
Novais R.M., Pullar R.C., Labrincha J.A. Geopolymer foams: An overview of recent advancements. Prog. Mater. Sci. 2020;109:100621. doi: 10.1016/j.pmatsci.2019.100621. DOI
Le A.S., Hájková P., Kovacic V., Bakalova T., Lukáš V., Le C.H., Seifert K.C., Peres A.P., Louda P. Thermal conductivity of reinforced geopolymer foams. Ceramics-Silikáty. 2019;63:365–373. doi: 10.13168/cs.2019.0032. DOI
Ge Y., Cui X., Kong Y., Li Z., He Y., Zhou Q. Porous geopolymeric spheres for removal of Cu (II) from aqueous solution: Synthesis and evaluation. J. Hazard. Mater. 2015;283:244–251. doi: 10.1016/j.jhazmat.2014.09.038. PubMed DOI
Ducman V., Korat L. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater. Charact. 2016;113:207–213. doi: 10.1016/j.matchar.2016.01.019. DOI
Novais R.M., Ascensão G., Buruberri L.H., Senff L., Labrincha J.A. Influence of blowing agent on the freshand hardened-state properties of lightweight geopolymers. Mater. Des. 2016;108:551–559. doi: 10.1016/j.matdes.2016.07.039. DOI
Bai C., Colombo P. High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceram. Int. 2017;43:2267–2273. doi: 10.1016/j.ceramint.2016.10.205. DOI
Abdollahnejad Z., Pacheco-Torgal F., Félix T., Tahri W., Aguiar J.B. Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr. Build. Mater. 2015;80:18–30. doi: 10.1016/j.conbuildmat.2015.01.063. DOI
Chiu Y.P., Lu Y.M., Shiau Y.C. Applying inorganic geopolymers added with aluminium powder to fire-resistant fillers. Mater. Res. Innov. 2015;19:S5–S642. doi: 10.1179/1432891714Z.0000000001168. DOI
Sanjayan J.G., Nazari A., Chen L., Nguyen G.H. Physical and mechanical properties of lightweight aerated geopolymer. Constr. Build. Mater. 2015;79:236–244. doi: 10.1016/j.conbuildmat.2015.01.043. DOI
Hajimohammadi A., Ngo T., Mendis P., Sanjayan J. Regulating the chemical foaming reaction to control the porosity of geopolymer foams. Mater. Des. 2017;120:255–265. doi: 10.1016/j.matdes.2017.02.026. DOI
Masi G., Rickard W.D., Bignozzi M.C., Van Riessen A. The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Compos. Part B Eng. 2015;76:218–228. doi: 10.1016/j.compositesb.2015.02.023. DOI
Delair S., Prud’homme É., Peyratout C., Smith A., Michaud P., Eloy L., Joussein E., Rossignol S. Durability of inorganic foam in solution: The role of alkali elements in the geopolymer network. Corros. Sci. 2012;59:213–221. doi: 10.1016/j.corsci.2012.03.002. DOI
Henon J., Alzina A., Absi J., Smith D.S., Rossignol S. Potassium geopolymer foams made with silica fume pore forming agent for thermal insulation. J. Porous Mater. 2013;20:37–46. doi: 10.1007/s10934-012-9572-3. DOI
Böke N., Birch G.D., Nyale S.M., Petrik L.F. New synthesis method for the production of coal fly ash-based foamed geopolymers. Constr. Build. Mater. 2015;75:189–199. doi: 10.1016/j.conbuildmat.2014.07.041. DOI
Zhang Z., Provis J.L., Reid A., Wang H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015;62:97–105. doi: 10.1016/j.cemconcomp.2015.03.013. DOI
Feng J., Zhang R., Gong L., Li Y., Cao W., Cheng X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 2015;65:529–533. doi: 10.1016/j.matdes.2014.09.024. DOI
Papa E., Medri V., Kpogbemabou D., Morinière V., Laumonier J., Vaccari A., Rossignol S. Porosity and insulating properties of silica-fume based foams. Energy Build. 2016;131:223–232. doi: 10.1016/j.enbuild.2016.09.031. DOI
Minelli M., Medri V., Papa E., Miccio F., Landi E., Doghieri F. Geopolymers as solid adsorbent for CO2 capture. Chem. Eng. Sci. 2016;148:267–274. doi: 10.1016/j.ces.2016.04.013. DOI
Novais R.M., Buruberri L.H., Seabra M.P., Labrincha J.A. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters. J. Hazard. Mater. 2016;318:631–640. doi: 10.1016/j.jhazmat.2016.07.059. PubMed DOI
Ge Y., Yuan Y., Wang K., He Y., Cui X. Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater. J. Hazard. Mater. 2015;299:711–718. doi: 10.1016/j.jhazmat.2015.08.006. PubMed DOI
López F.J., Sugita S., Kobayashi T. Cesium-adsorbent geopolymer foams based on silica from rice husk and metakaolin. Chem. Lett. 2014;43:128–130. doi: 10.1246/cl.130851. DOI
Sakkas K., Panias D., Nomikos P., Sofianos A. Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunn. Undergr. Space Technol. 2014;43:148–156. doi: 10.1016/j.tust.2014.05.003. DOI
Sarker P.K., Mcbeath S. Fire endurance of steel reinforced fly ash geopolymer concrete elements. Constr. Build. Mater. 2015;90:91–98. doi: 10.1016/j.conbuildmat.2015.04.054. DOI
Peng X., Li H., Shuai Q., Wang L. Fire Resistance of Alkali Activated Geopolymer Foams Produced from Metakaolin and Na2O2. Materials. 2020;13:535. doi: 10.3390/ma13030535. PubMed DOI PMC
Shuai Q., Xu Z., Yao Z., Chen X., Jiang Z., Peng X., An R., Li Y., Jiang X., Li H. Fire resistance of phosphoric acid-based geopolymer foams fabricated from metakaolin and hydrogen peroxide. Mater. Lett. 2020;263:127228. doi: 10.1016/j.matlet.2019.127228. DOI
Ye J., Zhang W., Shi D. Effect of elevated temperature on the properties of geopolymer synthesized from calcined ore-dressing tailing of bauxite and ground-granulated blast furnace slag. Constr. Build. Mater. 2014;69:41–48. doi: 10.1016/j.conbuildmat.2014.07.002. DOI
Chithambaram S.J., Kumar S., Prasad M.M. Thermo-mechanical characteristics of geopolymer mortar. Constr. Build. Mater. 2019;213:100–108. doi: 10.1016/j.conbuildmat.2019.04.051. DOI
Yang Z., Mocadlo R., Zhao M., Sisson R.D., Jr., Tao M., Liang J. Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at elevated temperatures. Constr. Build. Mater. 2019;221:308–317. doi: 10.1016/j.conbuildmat.2019.06.034. DOI
Kürklü G. The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos. Part B Eng. 2016;92:9–18. doi: 10.1016/j.compositesb.2016.02.043. DOI
František Š., Rostislav Š., Zdeněk T., Petr S., Vít Š., Zuzana Z.C. Preparation and properties of fly ashbased geopolymer foams. Ceramics-Silikáty. 2014;58:188–197.
Hlaváček P., Šmilauer V., Škvára F., Kopecký L., Šulc R. Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties. J. Eur. Ceram. Soc. 2015;35:703–709. doi: 10.1016/j.jeurceramsoc.2014.08.024. DOI
Cilla M.S., de Mello Innocentini M.D., Morelli M.R., Colombo P. Geopolymer foams obtained by the saponification/peroxide/gelcasting combined route using different soap foam precursors. J. Am. Ceram. Soc. 2017;100:3440–3450. doi: 10.1111/jace.14902. DOI
Liu L.P., Cui X.M., Yan H., Liu S.D., Gong S.Y. The phase evolution of phosphoric acid-based geopolymers at elevated temperatures. Mater. Lett. 2012;66:10–12. doi: 10.1016/j.matlet.2011.08.043. DOI
Liu L.P., Cui X.M., Qui S.H., Yu J.L., Zhang L. Preparation of phosphoric acid-based porous geopolymers. Appl. Clay Sci. 2010;50:600–603.
Łach M., Mikuła J., Lin W., Bazan P., Figiela B., Korniejenko K. Development and characterization of thermal insulation geopolymer foams based on fly ash. Proc. Eng. Technol. Innov. 2020;16:23–29. doi: 10.46604/peti.2020.5291. DOI
International Standards Organisation . Fire Resistance Tests, Elements of Building Construction (ISO 834) ISO; Geneva, Switzerland: 1980.
Tang C., Xu F.X., Li G. Combustion performance and thermal stability of basalt fiber-reinforced polypropylene composites. Polymers. 2019;11:1826. doi: 10.3390/polym11111826. PubMed DOI PMC
Mierzwiński D., Łach M., Hebda M., Walter J., Hebda M., Mikuła J. Thermal phenomena of alkali-activated metakaolin studied with a negative temperature coefficient system. J. Therm. Anal. Calorim. 2019;138:4167–4175. doi: 10.1007/s10973-019-08471-7. DOI
Bayrak G., Yilmaz S. Granite based glass-ceramic materials. Acta Phys. Pol. A. 2014;125:623–625. doi: 10.12693/APhysPolA.125.623. DOI