• This record comes from PubMed

Fire Resistance of Geopolymer Foams Layered on Polystyrene Boards

. 2022 May 11 ; 14 (10) : . [epub] 20220511

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Geopolymer foams are excellent materials in terms of mechanical loads and fire resistance applications. This study investigated the foaming process of geopolymers and foam stability, with a focus on the fire resistance performance when using polystyrene as the base layer. The main purpose is to define the influence of porosity on the physical properties and consequently to find applications and effectiveness of geopolymers. In this study, lightweight materials are obtained through a process called geopolymerization. Foaming was done by adding aluminum powder at the end of the geopolymer mortar preparation. The interaction between the aluminum powder and the alkaline solution (used for the binder during the mixing process) at room temperature is reactive enough to develop hydrogen-rich bubbles that increase the viscosity and promote the consolidation of geopolymers. The basic principle of thermodynamic reactions responsible for the formation of foams is characterized by hydrogen-rich gas generation, which is then trapped in the molecular structure of geopolymers. The geopolymer foams in this study are highly porous and robust materials. Moreover, the porosity distribution is very homogeneous. Experimental assessments were performed on four specimens to determine the density, porosity, mechanical strength, and thermal conductivity. The results showed that our geopolymer foams layered on polystyrene boards (with optimal thickness) have the highest fire resistance performance among others. This combination could withstand temperatures of up to 800 °C for more than 15 min without the temperature rising on the insulated side. Results of the best-performing geopolymer foam underline the technical characteristics of the material, with an average apparent density of 1 g/cm3, a volume porosity of 55%, a thermal conductivity of 0.25 W/mK, and excellent fire resistance.

See more in PubMed

Davidovits J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989;35:429–441. doi: 10.1007/BF01904446. DOI

Zhang Z., Provis J., Reid A., Wang H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr. Build. Mater. 2014;56:113–127. doi: 10.1016/j.conbuildmat.2014.01.081. DOI

Koleżyński A., Król M., Żychowicz M. The structure of geopolymers—Theoretical studies. J. Mol. Struct. 2018;1163:465–471. doi: 10.1016/j.molstruc.2018.03.033. DOI

Zhang Z., Yao X., Zhu H., Hua S., Chen Y. Activating process of geopolymer source material: Kaolinite. J. Wuhan Univ. Technol. Sci. Ed. 2009;24:132–136. doi: 10.1007/s11595-009-1132-6. DOI

Bai C., Colombo P. Processing, properties and applications of highly porous geopolymers: A review. Ceram. Int. 2018;44:16103–16118. doi: 10.1016/j.ceramint.2018.05.219. DOI

Ercoli R., Laskowska D., Nguyen V.V., Le V.S., Louda P., Łoś P., Ciemnicka J., Prałat K., Renzulli A., Paris E., et al. Mechanical and Thermal Properties of Geopolymer Foams (GFs) Doped with By-Products of the Secondary Aluminum Industry. Polymers. 2022;14:703. doi: 10.3390/polym14040703. PubMed DOI PMC

Abdollahnejad Z., Pacheco-Torgal F., Félix T., Tahri W., Aguiar J. Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr. Build. Mater. 2015;80:18–30. doi: 10.1016/j.conbuildmat.2015.01.063. DOI

Katarzyna B., Le C.H., Louda P., Michał S., Bakalova T., Tadeusz P., Prałat K. The Fabrication of Geopolymer Foam Composites Incorporating Coke Dust Waste. Processes. 2020;8:1052. doi: 10.3390/pr8091052. DOI

Lightweight Aggregate Concrete—1st Edition. [(accessed on 13 April 2022)]. Available online: https://www.elsevier.com/books/lightweight-aggregate-concrete/chandra/978-0-8155-1486-2.

Integral Waterproofing of Concrete Structures—1st Edition. [(accessed on 13 April 2022)]. Available online: https://www.elsevier.com/books/integral-waterproofing-of-concrete-structures/al-jabari/978-0-12-824354-1.

Geopolymers—1st Edition. [(accessed on 13 April 2022)]. Available online: https://www.elsevier.com/books/geopolymers/provis/978-1-84569-449-4.

Journal Ceramics-Silikáty. [(accessed on 13 April 2022)]. Available online: https://www.ceramics-silikaty.cz/index.php?page=cs_detail_doi&id=114.

Le V.S., Louda P., Tran H.N., Nguyen P.D., Bakalova T., Buczkowska K.E., Dufkova I. Study on Temperature-Dependent Properties and Fire Resistance of Metakaolin-Based Geopolymer Foams. Polymers. 2020;12:2994. doi: 10.3390/polym12122994. PubMed DOI PMC

Škvára F., Kopecký L., Myšková L., Šmilauer V., Alberovska L., Vinšová L. Aluminosilicate polymers–influence of elevated temperatures, efflorescence. Ceram.–Silikáty. 2009;53:276–282.

Xu F., Gu G., Huang X., Zhang J., Zhu J. Investigation on formation mechanism of pore structure in geopolymer foam concrete. J. Build. Mater. 2020;23:1024–1029. doi: 10.3969/j.issn.1007-9629.2020.05.005. DOI

Ercoli R., Orlando A., Borrini D., Tassi F., Bicocchi G., Renzulli A. Hydrogen-Rich Gas Produced by the Chemical Neutralization of Reactive By-Products from the Screening Processes of the Secondary Aluminum Industry. Sustainability. 2021;13:12261. doi: 10.3390/su132112261. DOI

Bai C., Colombo P. High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceram. Int. 2017;43:2267–2273. doi: 10.1016/j.ceramint.2016.10.205. DOI

Singh B., Ishwarya G., Gupta M., Bhattacharyya S. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015;85:78–90. doi: 10.1016/j.conbuildmat.2015.03.036. DOI

Kürklü G. The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos. Part B Eng. 2016;92:9–18. doi: 10.1016/j.compositesb.2016.02.043. DOI

Xu F., Gu G., Zhang W., Wang H., Huang X., Zhu J. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method. Ceram. Int. 2018;44:19989–19997. doi: 10.1016/j.ceramint.2018.07.267. DOI

Liu L.-P., Cui X.-M., He Y., Liu S.-D., Gong S.-Y. The phase evolution of phosphoric acid-based geopolymers at elevated temperatures. Mater. Lett. 2012;66:10–12. doi: 10.1016/j.matlet.2011.08.043. DOI

Samson G., Cyr M. Porous structure optimisation of flash-calcined metakaolin/fly ash geopolymer foam concrete. Eur. J. Environ. Civ. Eng. 2018;22:1482–1498. doi: 10.1080/19648189.2017.1304285. DOI

Bai C., Franchin G., Elsayed H., Conte A., Colombo P. High strength metakaolin-based geopolymer foams with variable macroporous structure. J. Eur. Ceram. Soc. 2016;36:4243–4249. doi: 10.1016/j.jeurceramsoc.2016.06.045. DOI

Yan S., Zhang F., Liu J., Ren B., He P., Jia D., Yang J. Green synthesis of high porosity waste gangue microsphere/geopolymer composite foams via hydrogen peroxide modification. J. Clean. Prod. 2019;227:483–494. doi: 10.1016/j.jclepro.2019.04.185. DOI

Ducman V., Korat L. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater. Charact. 2016;113:207–213. doi: 10.1016/j.matchar.2016.01.019. DOI

Novais R.M., Ascensão G., Buruberri L., Senff L., Labrincha J. Influence of blowing agent on the fresh- and hardened-state properties of lightweight geopolymers. Mater. Des. 2016;108:551–559. doi: 10.1016/j.matdes.2016.07.039. DOI

Ye J., Zhang W., Shi D. Effect of elevated temperature on the properties of geopolymer synthesized from calcined ore-dressing tailing of bauxite and ground-granulated blast furnace slag. Constr. Build. Mater. 2014;69:41–48. doi: 10.1016/j.conbuildmat.2014.07.002. DOI

Chithambaram S.J., Kumar S., Prasad M. Thermo-mechanical characteristics of geopolymer mortar. Constr. Build. Mater. 2019;213:100–108. doi: 10.1016/j.conbuildmat.2019.04.051. DOI

Hlaváček P., Šmilauer V., Škvára F., Kopecký L., Šulc R. Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties. J. Eur. Ceram. Soc. 2015;35:703–709. doi: 10.1016/j.jeurceramsoc.2014.08.024. DOI

Le-Ping L., Xue-Min C., Shu-Heng Q., Jun-Li Y., Lin Z. Preparation of phosphoric acid-based porous geopolymers. Appl. Clay Sci. 2010;50:600–603. doi: 10.1016/j.clay.2010.10.004. DOI

Provis J.L., Van Deventer J.S.J., editors. Geopolymers: Structures, Processing, Properties and Industrial Applications. Elsevier; Amsterdam, The Netherlands: 2009.

Henon J., Alzina A., Absi J., Smith D.S., Rossignol S. Potassium geopolymer foams made with silica fume pore forming agent for thermal insulation. J. Porous Mater. 2012;20:37–46. doi: 10.1007/s10934-012-9572-3. DOI

Le V.S., Szczypinski M.M., Hájková P., Kovacic V., Bakalova T., Volesky L., Hiep L.C., Louda P. Mechanical properties of geopolymer foam at high temperature. Sci. Eng. Compos. Mater. 2020;27:129–138. doi: 10.1515/secm-2020-0013. DOI

Guillaume E., Dréan V., Girardin B., Benameur F., Fateh T. Reconstruction of Grenfell Tower fire. Part 1: Lessons from observations and determination of work hypotheses. Fire Mater. 2019;44:3–14. doi: 10.1002/fam.2766. DOI

Guillaume E., Dréan V., Girardin B., Koohkan M., Fateh T. Reconstruction of Grenfell Tower fire. Part 2: A numerical investigation of the fire propagation and behaviour from the initial apartment to the façade. Fire Mater. 2019;44:15–34. doi: 10.1002/fam.2765. DOI

Guillaume E., Dréan V., Girardin B., Benameur F., Koohkan M., Fateh T. Reconstruction of Grenfell Tower fire. Part 3—Numerical simulation of the Grenfell Tower disaster: Contribution to the understanding of the fire propagation and behaviour during the vertical fire spread. Fire Mater. 2019;44:35–57. doi: 10.1002/fam.2763. DOI

Guillaume E., Dréan V., Girardin B., Fateh T. Reconstruction of the Grenfell Tower fire—Part 4: Contribution to the understanding of fire propagation and behaviour during horizontal fire spread. Fire Mater. 2020;44:1072–1098. doi: 10.1002/fam.2911. DOI

Guillaume E., Dréan V., Girardin B., Fateh T. Reconstruction of the Grenfell Tower fire—Part 5: Contribution to the understanding of the tenability conditions inside the apartments following the façade fire. Fire Mater. 2022:1–28. doi: 10.1002/fam.3054. DOI

Guillaume E., Drean V., Girardin B., Fateh T. Reconstruction of the Grenfell tower fire—Part 6—Numerical simulation of the Grenfell tower disaster: Contribution to the understanding of the tenability conditions inside the common areas of the tower. Fire Mater. 2022:1–19. doi: 10.1002/fam.3053. DOI

Autopore IV 9500 Series Measures Sample Porosity|Laboratory Talk. [(accessed on 13 April 2022)]. Available online: https://laboratorytalk.com/article/370936/autopore-iv-9500-series-measur.

ČSN EN 1015-11 (722400)—Zkušební Metody Malt Pro Zdivo—Část 11: Stanovení Pevnosti Zatvrdlých Malt v Tahu za Ohybu a v Tlaku—Duben 2020—Technické Normy—Ing. Jiří Hrazdil. [(accessed on 13 April 2022)]. Available online: https://shop.normy.biz/detail/509887.

Standard Test Method for Thermal Conductivity of Solids Using the Guarded-Comparative-Longitudinal Heat Flow Technique. ASTM International (ASTM); West Conshohocken, PA, USA: 2013. [(accessed on 13 April 2022)]. Available online: https://webstore.ansi.org/Standards/ASTM/ASTME122513.

ČSN EN 13381-3|ČSN Online. [(accessed on 13 April 2022)]. Available online: https://csnonline.agentura-cas.cz/Detailnormy.aspx?k=97605.

ISO 834-11:2014. [(accessed on 13 April 2022)]. Available online: https://www.iso.org/standard/57595.html.

Bai C., Franchin G., Elsayed H., Zaggia A., Conte L., Li H., Colombo P. High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment. J. Mater. Res. 2017;32:3251–3259. doi: 10.1557/jmr.2017.127. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...