Multicriteria optimization of the composition, thermodynamic and strength properties of fly-ash as an additive in metakaolin-based geopolymer composites

. 2024 May 07 ; 14 (1) : 10434. [epub] 20240507

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38714763

Grantová podpora
IP-117 The Institutional Endowment for the Long-Term Conceptual Development of Research Institutes
PIN: 618-188-02-48 Faculty of Mechanical Engineering, University of Kalisz, Nowy Świet 4, 62-800 Kalisz, Poland

Odkazy

PubMed 38714763
PubMed Central PMC11076601
DOI 10.1038/s41598-024-61123-1
PII: 10.1038/s41598-024-61123-1
Knihovny.cz E-zdroje

This paper presents the construction of intelligent systems for selecting the optimum concentration of geopolymer matrix components based on ranking optimality criteria. A peculiarity of the methodology is replacing discrete time intervals with a sequence of states. Markov chains represent a synthetic property accumulating heterogeneous factors. The computational basis for the calculations was the digitization of experimental data on the strength properties of fly ashes collected from thermal power plants in the Czech Republic and used as additives in geopolymers. A database and a conceptual model of priority ranking have been developed, that are suitable for determining the structure of relations of the main factors. Computational results are presented by studying geopolymer matrix structure formation kinetics under changing component concentrations in real- time. Multicriteria optimization results for fly-ash as an additive on metakaolin-based geopolymer composites show that the optimal composition of the geopolymer matrix within the selected variation range includes 100 g metakaolin, 90 g potassium activator, 8 g silica fume, 2 g basalt fibers and 50 g fly ash by ratio weight. This ratio gives the best mechanical, thermal, and technological properties.

Zobrazit více v PubMed

Nazari A, Hajiallahyari H, Rahimi A, Khanmohammadi H, Amini M. Prediction compressive strength of Portland cement-based geopolymers by artificial neural networks. Neural Comput. Appl. 2019;31:733–741. doi: 10.1007/s00521-012-1082-3. DOI

Neupane K. High-strength geopolymer concrete- properties, advantages and challenges. Adv. Mater. 2018;7(2):15. doi: 10.11648/j.am.20180702.11. DOI

Andrew RM. Global CO2 emissions from cement production. Earth Syst. Sci. Data. 2018;10(1):195–217. doi: 10.5194/essd-10-195-2018. PubMed DOI PMC

Benhelal E, Zahedi G, Shamsaei E, Bahadori A. Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 2013;51:142–161. doi: 10.1016/j.jclepro.2012.10.049. DOI

Ali MB, Saidur R, Hossain MS. A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 2011;15(5):2252–2261. doi: 10.1016/j.rser.2011.02.014. DOI

Abdila SR, et al. Potential of soil stabilization using ground granulated blast furnace slag (GGBFS) and fly ash via geopolymerization method: A review. Materials. 2022 doi: 10.3390/ma15010375. PubMed DOI PMC

Mustakim SM, et al. Improvement in fresh, mechanical, and microstructural properties of fly ash- blast furnace slag based geopolymer concrete by addition of nano and micro silica. Silicon. 2021;13(8):2415–2428. doi: 10.1007/s12633-020-00593-0. DOI

Li F, Liu L, Yang Z, Li S. Physical and mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste granulated blast furnace slag (GBFS) and functionalized multi-walled carbon nanotubes (MWCNTs) J. Hazard Mater. 2021 doi: 10.1016/j.jhazmat.2020.123339. PubMed DOI

Xuan MY, Wang XY. Effect of belite-rich cement replacement on the properties enhancement of eco-friendly ultra-high performance concrete containing limestone powder and slag. J. Mater. Res. Technol. 2023;23:1487–1502. doi: 10.1016/j.jmrt.2023.01.115. DOI

Liao Y, Yao J, Deng F, Li H, Wang K, Tang S. Hydration behavior and strength development of supersulfated cement prepared by calcined phosphogypsum and slaked lime. J. Build. Eng. 2023;80:108075. doi: 10.1016/j.jobe.2023.108075. DOI

Radulovic J, Beleno Castaneda NI. On the potential of zeotropic mixtures in supercritical ORC powered by geothermal energy source. Energy Convers. Manag. 2014;88:365–371. doi: 10.1016/j.enconman.2014.08.048. DOI

Liu L, Cai G, Liu X, Liu S, Puppala AJ. Evaluation of thermal-mechanical properties of quartz sand–bentonite–carbon fiber mixtures as the borehole backfilling material in ground source heat pump. Energy Build. 2019 doi: 10.1016/j.enbuild.2019.109407. PubMed DOI

Bouchoul B, Benaniba MT, Massardier V. Thermal and mechanical properties of bio-based plasticizers mixtures on poly (vinyl chloride) Polimeros. 2017;27(3):237–246. doi: 10.1590/0104-1428.14216. DOI

Ng LWT, Willcox KE. Multifidelity approaches for optimization under uncertainty. Int. J. Numer. Methods Eng. 2014;100(10):746–772. doi: 10.1002/nme.4761. DOI

Yu J, Liu M. Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps. Phys. A Stat. Mech. Appl. 2017;482:14–28. doi: 10.1016/j.physa.2017.04.067. DOI

Rathod N, Chippagiri R, Ralegaonkar RV. Cleaner production of geopolymer materials: A critical review of waste-derived activators. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.03.502. DOI

Ramujee, K., Potharaju, M. & Jyothi, V. Mechanical Properties of Geopolymer Concrete Composites. https://www.sciencedirect.comwww.materialstoday.com/proceedings (2017).

Bandaru SK. Study on fly ash and GGBS based geopolymer corbels. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.05.303. DOI

Izadifar M, Valencia NC, Xiao P, Ukrainczyk N, Koenders E. 3D off-lattice coarse-grained Monte Carlo simulations for nucleation of alkaline aluminosilicate gels. Materials. 2023 doi: 10.3390/ma16051863. PubMed DOI PMC

Lazorenko G, Kasprzhitskii A. Grand canonical Monte Carlo simulation study on the effect of crystallinity and structural disorder on water sorption in geopolymers. Ceram. Int. 2022;48(24):37464–37469. doi: 10.1016/j.ceramint.2022.08.114. DOI

Vlachakis, C., Biondi, L. & Perry, M. 3D Printed Smart Repairs for Civil Infrastructure. http://www.ndt.net/?id=23442.

Wang Q, Guo H, Yu T, Yuan P, Deng L, Zhang B. Utilization of calcium carbide residue as solid alkali for preparing fly ash-based geopolymers: Dependence of compressive strength and microstructure on calcium carbide residue, water content and curing temperature. Materials. 2022 doi: 10.3390/ma15030973. PubMed DOI PMC

Sharko A, et al. Multicriteria assessment for calculating the optimal content of calcium-rich fly ash in metakaolin-based geopolymers. Ceramics. 2023;6(1):525–537. doi: 10.3390/ceramics6010031. DOI

Hadigheh SA, Ke F, Fatemi H. Durability design criteria for the hybrid carbon fibre reinforced polymer (CFRP)-reinforced geopolymer concrete bridges. Structures. 2022;35:325–339. doi: 10.1016/j.istruc.2021.10.087. DOI

Bandaru, S. Binder Index as Criteria for Assessing the Strength of Geopolymer Concrete.https://www.researchgate.net/publication/341786962 (2019).

Noushini A, Castel A. Performance-based criteria to assess the suitability of geopolymer concrete in marine environments using modified ASTM C1202 and ASTM C1556 methods. Mater. Struct./Mater. Construct. 2018 doi: 10.1617/s11527-018-1267-z. DOI

Sandanayake M, Gunasekara C, Law D, Zhang G, Setunge S, Wanijuru D. Sustainable criterion selection framework for green building materials—An optimization based study of fly-ash geopolymer concrete. Sustain. Mater. Technol. 2020 doi: 10.1016/j.susmat.2020.e00178. DOI

Zaheer, M. et al.Mechanical Properties of Ambient Cured High-Strength Plain and Hybrid 1 Fiber Reinforced Geopolymer Composites from Triaxial Compressive Tests (2018).

Sharko, M., Petrushenko, N., Gonchar, O., Vasylenko, N., Vorobyova, K. & Zakryzhevska, I. Information Support of Intelligent Decision Support Systems for Managing Complex Organizational and Technical Objects Based on Markov Chains.

Sharko M, et al. Information technology to assess the enterprises’ readiness for innovative transformations using Markov chains. Lect. Notes Data Eng. Commun. Technol. 2023;149:197–213. doi: 10.1007/978-3-031-16203-9_12/COVER. DOI

Sharko M, Gusarina N, Petrushenko N. Information-entropy model of making management decisions in the economic development of the enterprises. Adv. Intell. Syst. Comput. 2019 doi: 10.1007/978-3-030-26474-1. DOI

Ludwig R, Pouymayou B, Balermpas P, Unkelbach J. A hidden Markov model for lymphatic tumor progression in the head and neck. Sci. Rep. 2021 doi: 10.1038/s41598-021-91544-1. PubMed DOI PMC

Sharko MV, Sharko OV. Innovation aspects of enterprises development management in regional tourism. Actual Probl. Econ. 2016;181(7):206–213.

Odhiambo J, Weke P, Ngare P. Modeling Kenyan economic impact of corona virus in Kenya using discrete-time Markov chains. J. Finance Econ. 2020;8(2):80–85. doi: 10.12691/jfe-8-2-5. DOI

Awoyera PO, Akinrinade AD, de Sousa Galdino AG, Althoey F, Kirgiz MS, Tayeh BA. Thermal insulation and mechanical characteristics of cement mortar reinforced with mineral wool and rice straw fibers. J. Build. Eng. 2022 doi: 10.1016/j.jobe.2022.104568. DOI

Ercoli R, et al. Mechanical and thermal properties of geopolymer foams (GFs) doped with by-products of the secondary aluminum industry. Polymers (Basel) 2022 doi: 10.3390/polym14040703. PubMed DOI PMC

Buketov AV, Sharko AV, Zinchenko DA, Stepanchikov DM. To the problem of ingredients optimization of composite materials based on epoxy resin. Bull. Karaganda Univ.-Math. 2017;86(2):37–44. doi: 10.31489/2017M2/37-44. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...