Effect of K/Al Molar Ratio on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018119
Ministry of Education, Youth and Sports
PubMed
34771311
PubMed Central
PMC8587831
DOI
10.3390/polym13213754
PII: polym13213754
Knihovny.cz E-zdroje
- Klíčová slova
- K-geopolymer, claystone, mechanical properties, metakaolinite, thermal properties,
- Publikační typ
- časopisecké články MeSH
A metakaolinite-based geopolymer binder was prepared by using calcined claystone as the main raw material and potassium as the alkaline activator. Chamotte was added (65 vol%) to form geopolymer composites. Potassium hydroxide (KOH) was used to adjust the molar ratio of K/Al and the effect of K/Al on thermo-mechanical properties of geopolymer composites was investigated. This study aimed to analyze the effect of K/Al ratio and exposure to high temperatures (up to 1200 °C) on the compressive and flexural strengths, phase composition, pore size distribution, and thermal dilatation. With an increasing K/Al ratio, the crystallization temperature of the new phases (leucite and kalsilite) decreased. Increasing content of K/Al led to a decline in the onset temperature of the major shrinkage. The average pore size slightly increased with increasing K/Al ratio at laboratory temperature. Mechanical properties of geopolymer composites showed degradation with the increase of the K/Al ratio. The exception was the local maximum at a K/Al ratio equal to one. The results showed that the compressive strength decreases with increasing temperature. For thermal applications above 600 °C, it is better to use samples with lower K/Al ratios (0.55 or 0.70).
Zobrazit více v PubMed
Rovnanik P., Safrankova K. Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Materials. 2016;9:535. doi: 10.3390/ma9070535. PubMed DOI PMC
Perná I., Novotná M., Řimnáčová D., Šupová M. New Metakaolin-Based Geopolymers with the Addition of Different Types of Waste Stone Powder. Crystals. 2021;11:983. doi: 10.3390/cryst11080983. DOI
Bouna L., Ait El Fakir A., Benlhachemi A., Draoui K., Ezahri M., Bakiz B., Villain S., Guinneton F., Elalem N. Synthesis and characterization of mesoporous geopolymer based on Moroccan kaolinite rich clay. Appl. Clay Sci. 2020;196:105764. doi: 10.1016/j.clay.2020.105764. DOI
Lyon R.E., Balaguru P.N., Foden A., Sorathia U., Davidovits J., Davidovics M. Fire-resistant Aluminosilicate Composites. Fire Mater. 1997;21:67–73. doi: 10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N. DOI
Davidovits J. Geopolymer: Chemistry and Applications. Institut Géopolymère; Saint-Quentin, France: 2008. p. 285.
Davidovits J. Properties of geopolymer cement; Proceedings of the First International Conference on Alkaline Cements and Concretes; Kiev, Ukraine. 11–14 October 1994; pp. 131–149.
Aliabdo A.A., Abd Elmoaty A.E.M., Salem H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016;121:694–703. doi: 10.1016/j.conbuildmat.2016.06.062. DOI
Zhang Z., Wang H. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing; Oxford, UK: 2015. 22-Alkali-activated cements for protective coating of OPC concrete; pp. 605–626.
Alzeer M.I.M., MacKenzie K.J.D., Keyzers R.A. Porous aluminosilicate inorganic polymers (geopolymers): A new class of environmentally benign heterogeneous solid acid catalysts. Appl. Catal. A Gen. 2016;524:173–181. doi: 10.1016/j.apcata.2016.06.024. DOI
Haincova E., Hajkova P., Kohout J. Prepregs for Temperature Resistant Composites. Materials. 2019;12:4012. doi: 10.3390/ma12234012. PubMed DOI PMC
Haincova E., Hajkova P. Effect of Boric Acid Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites. Materials. 2020;13:5409. doi: 10.3390/ma13235409. PubMed DOI PMC
Mužek M.N., Svilović S., Zelić J. Fly ash-based geopolymeric adsorbent for copper ion removal from wastewater. Desalination Water Treat. 2013;52:2519–2526. doi: 10.1080/19443994.2013.792015. DOI
Xia M., Sanjayan J. Method of formulating geopolymer for 3D printing for construction applications. Mater. Des. 2016;110:382–390. doi: 10.1016/j.matdes.2016.07.136. DOI
Lancellotti I., Barbieri L., Leonelli C. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing; Oxford, UK: 2015. 20-Use of alkali-activated concrete binders for toxic waste immobilization; pp. 539–554.
Kohout J., Koutnik P. Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Materials. 2020;13:2395. doi: 10.3390/ma13102395. PubMed DOI PMC
Kai M.-F., Dai J.-G. Understanding geopolymer binder-aggregate interfacial characteristics at molecular level. Cem. Concr. Res. 2021;149:106582. doi: 10.1016/j.cemconres.2021.106582. DOI
Thang N.H., Nhung L.T., Quyen P.V.T.H., Phong D.T., Khe D.T., Van Phuc N. Development of heat resistant geopolymer-based materials from red mud and rice husk ash; Proceedings of the 2nd International Conference on Applied Sciences; Ho Chi Minh City, Vietnam. 24–25 May 2018;
Hájková P. Kaolinite Claystone-Based Geopolymer Materials: Effect of Chemical Composition and Curing Conditions. Minerals. 2018;8:444. doi: 10.3390/min8100444. DOI
Koutník P., Soukup A., Bezucha P., Šafář J., Kohout J. Low viscosity metakaolinite based geopolymer binders. Constr. Build. Mater. 2020;230:116978. doi: 10.1016/j.conbuildmat.2019.116978. DOI
Kohout J., Koutník P., Bezucha P., Kwoczynski Z. Leachability of the metakaolinite-rich materials in different alkaline solutions. Mater. Today Commun. 2019;21:100669. doi: 10.1016/j.mtcomm.2019.100669. DOI
Amran Y.H.M., Alyousef R., Alabduljabbar H., El-Zeadani M. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020;251:119679. doi: 10.1016/j.jclepro.2019.119679. DOI
Xu H., Van Deventer J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000;59:247–266. doi: 10.1016/S0301-7516(99)00074-5. DOI
Yao X., Zhang Z., Zhu H., Chen Y. Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry. Thermochim. Acta. 2009;493:49–54. doi: 10.1016/j.tca.2009.04.002. DOI
Yan D., Xie L., Qian X., Ruan S., Zeng Q. Compositional Dependence of Pore Structure, Strengthand Freezing-Thawing Resistance of Metakaolin-Based Geopolymers. Materials. 2020;13:2973. doi: 10.3390/ma13132973. PubMed DOI PMC
Duxson P., Mallicoat S.W., Lukey G.C., Kriven W.M., van Deventer J.S.J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007;292:8–20. doi: 10.1016/j.colsurfa.2006.05.044. DOI
Lemougna P.N., Chinje Melo U.F., Delplancke M.-P., Rahier H. Influence of the activating solution composition on the stability and thermo-mechanical properties of inorganic polymers (geopolymers) from volcanic ash. Constr. Build. Mater. 2013;48:278–286. doi: 10.1016/j.conbuildmat.2013.06.089. DOI
Vitola L., Pundiene I., Pranckeviciene J., Bajare D. The Impact of the Amount of Water Used in Activation Solution and the Initial Temperature of Paste on the Rheological Behaviour and Structural Evolution of Metakaolin-Based Geopolymer Pastes. Sustainability. 2020;12:8216. doi: 10.3390/su12198216. DOI
Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010;24:1176–1183. doi: 10.1016/j.conbuildmat.2009.12.023. DOI
Lahoti M., Wong K.K., Yang E.-H., Tan K.H. Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceram. Int. 2018;44:5726–5734. doi: 10.1016/j.ceramint.2017.12.226. DOI
Ozer I., Soyer-Uzun S. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios. Ceram. Int. 2015;41:10192–10198. doi: 10.1016/j.ceramint.2015.04.125. DOI
Silva P.D., Sagoe-Crenstil K., Sirivivatnanon V. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cem. Concr. Res. 2007;37:512–518. doi: 10.1016/j.cemconres.2007.01.003. DOI
Hou L., Li J., Lu Z.-y. Effect of Na/Al on formation, structures and properties of metakaolin based Na-geopolymer. Constr. Build. Mater. 2019;226:250–258. doi: 10.1016/j.conbuildmat.2019.07.171. DOI
Liu J., Li X., Lu Y., Bai X. Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer. Constr. Build. Mater. 2020;263:120653. doi: 10.1016/j.conbuildmat.2020.120653. DOI
Lahoti M., Narang P., Tan K.H., Yang E.-H. Mix design factors and strength prediction of metakaolin-based geopolymer. Ceram. Int. 2017;43:11433–11441. doi: 10.1016/j.ceramint.2017.06.006. DOI
Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., van Deventer J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005;269:47–58. doi: 10.1016/j.colsurfa.2005.06.060. DOI
Tawfik A., Abd El-Raoof F., Katsuki H., MacKenzie K.J.D., Komarneni S. K-Based Geopolymer from metakaolin: Roles of K/Al ratio and water or steam Curing at different temperatures. Mater. Constr. 2016;66:e081. doi: 10.3989/mc.2016.03115. DOI
Koutnik P. Comparison of Kaolin and Kaolinitic Claystones as Raw Materials for Preparing Meta-Kaolinite-Based Geopolymers. Ceramics–Silikaty. 2019;63:110–123. doi: 10.13168/cs.2019.0003. DOI
Barbosa V.F.F., MacKenzie K.J.D. Synthesis and thermal behaviour of potassium sialate geopolymers. Mater. Lett. 2003;57:1477–1482. doi: 10.1016/S0167-577X(02)01009-1. DOI
Lin T.S., Jia D.C., He P.G., Wang M.R. Thermo-mechanical and Microstructural Characterization of Geopolymers with α-Al2O3 Particle Filler. Int. J. Thermophys. 2009;30:1568–1577. doi: 10.1007/s10765-009-0636-9. DOI
Duxson P., Lukey G.C., van Deventer J.S.J. Thermal evolution of metakaolin geopolymers: Part 1–Physical evolution. J. Non-Cryst. Solids. 2006;352:5541–5555. doi: 10.1016/j.jnoncrysol.2006.09.019. DOI
Medri V., Fabbri S., Ruffini A., Dedecek J., Vaccari A. SiC-based refractory paints prepared with alkali aluminosilicate binders. J. Eur. Ceram. Soc. 2011;31:2155–2165. doi: 10.1016/j.jeurceramsoc.2011.05.006. DOI
Kuenzel C., Vandeperre L.J., Donatello S., Boccaccini A.R., Cheeseman C., Brown P. Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers. J. Am. Ceram. Soc. 2012;95:3270–3277. doi: 10.1111/j.1551-2916.2012.05380.x. DOI
Kovářík T., Rieger D., Kadlec J., Křenek T., Kullová L., Pola M., Bělský P., Franče P., Říha J. Thermomechanical properties of particle-reinforced geopolymer composite with various aggregate gradation of fine ceramic filler. Constr. Build. Mater. 2017;143:599–606. doi: 10.1016/j.conbuildmat.2017.03.134. DOI
Westman A.E.R. The Thermal Expansion of Fireclay Bricks. Univ. Ill. Bull. 1928;26:1–30.
Okada K., Ooyama A., Isobe T., Kameshima Y., Nakajima A., MacKenzie K.J.D. Water retention properties of porous geopolymers for use in cooling applications. J. Eur. Ceram. Soc. 2009;29:1917–1923. doi: 10.1016/j.jeurceramsoc.2008.11.006. DOI
Lemougna P.N., MacKenzie K.J.D., Melo U.F.C. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int. 2011;37:3011–3018. doi: 10.1016/j.ceramint.2011.05.002. DOI
Musil S.S., Kriven W.M., Biernacki J. In SituMechanical Properties of Chamotte Particulate Reinforced, Potassium Geopolymer. J. Am. Ceram. Soc. 2014;97:907–915. doi: 10.1111/jace.12736. DOI
Trindade A.C.C., Silva F.d.A., Alcamand H.A., Borges P.H.R. On The Mechanical Behavior of Metakaolin Based Geopolymers Under Elevated Temperatures. Mater. Res. 2017;20((Suppl. S2)):265–272. doi: 10.1590/1980-5373-mr-2017-0101. DOI
Rovnaník P. Effect of the aggregate type on the properties of alkali-activated slag subjected to high temperatures. Mater. Tehnol. 2015;49:709–713. doi: 10.17222/mit.2014.116. DOI
Fayyad S.M., Al-Marahleh G.S., Abu-Ein S.Q. Improvement of the Refractoriness under Load of Fire-Clay Refractory Bricks. Adv. Theor. Appl. Mech. 2012;5:161–172.
Zhang M., Zhao M., Zhang G., El-Korchi T., Tao M. A multiscale investigation of reaction kinetics, phase formation, and mechanical properties of metakaolin geopolymers. Cem. Concr. Compos. 2017;78:21–32. doi: 10.1016/j.cemconcomp.2016.12.010. DOI
Bell J.L., Driemeyer P.E., Kriven W.M. Formation of Ceramics from Metakaolin-Based Geopolymers. Part II: K-Based Geopolymer. J. Am. Ceram. Soc. 2009;92:607–615. doi: 10.1111/j.1551-2916.2008.02922.x. DOI