Effect of K/Al Molar Ratio on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites

. 2021 Oct 29 ; 13 (21) : . [epub] 20211029

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34771311

Grantová podpora
LM2018119 Ministry of Education, Youth and Sports

A metakaolinite-based geopolymer binder was prepared by using calcined claystone as the main raw material and potassium as the alkaline activator. Chamotte was added (65 vol%) to form geopolymer composites. Potassium hydroxide (KOH) was used to adjust the molar ratio of K/Al and the effect of K/Al on thermo-mechanical properties of geopolymer composites was investigated. This study aimed to analyze the effect of K/Al ratio and exposure to high temperatures (up to 1200 °C) on the compressive and flexural strengths, phase composition, pore size distribution, and thermal dilatation. With an increasing K/Al ratio, the crystallization temperature of the new phases (leucite and kalsilite) decreased. Increasing content of K/Al led to a decline in the onset temperature of the major shrinkage. The average pore size slightly increased with increasing K/Al ratio at laboratory temperature. Mechanical properties of geopolymer composites showed degradation with the increase of the K/Al ratio. The exception was the local maximum at a K/Al ratio equal to one. The results showed that the compressive strength decreases with increasing temperature. For thermal applications above 600 °C, it is better to use samples with lower K/Al ratios (0.55 or 0.70).

Zobrazit více v PubMed

Rovnanik P., Safrankova K. Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Materials. 2016;9:535. doi: 10.3390/ma9070535. PubMed DOI PMC

Perná I., Novotná M., Řimnáčová D., Šupová M. New Metakaolin-Based Geopolymers with the Addition of Different Types of Waste Stone Powder. Crystals. 2021;11:983. doi: 10.3390/cryst11080983. DOI

Bouna L., Ait El Fakir A., Benlhachemi A., Draoui K., Ezahri M., Bakiz B., Villain S., Guinneton F., Elalem N. Synthesis and characterization of mesoporous geopolymer based on Moroccan kaolinite rich clay. Appl. Clay Sci. 2020;196:105764. doi: 10.1016/j.clay.2020.105764. DOI

Lyon R.E., Balaguru P.N., Foden A., Sorathia U., Davidovits J., Davidovics M. Fire-resistant Aluminosilicate Composites. Fire Mater. 1997;21:67–73. doi: 10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N. DOI

Davidovits J. Geopolymer: Chemistry and Applications. Institut Géopolymère; Saint-Quentin, France: 2008. p. 285.

Davidovits J. Properties of geopolymer cement; Proceedings of the First International Conference on Alkaline Cements and Concretes; Kiev, Ukraine. 11–14 October 1994; pp. 131–149.

Aliabdo A.A., Abd Elmoaty A.E.M., Salem H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016;121:694–703. doi: 10.1016/j.conbuildmat.2016.06.062. DOI

Zhang Z., Wang H. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing; Oxford, UK: 2015. 22-Alkali-activated cements for protective coating of OPC concrete; pp. 605–626.

Alzeer M.I.M., MacKenzie K.J.D., Keyzers R.A. Porous aluminosilicate inorganic polymers (geopolymers): A new class of environmentally benign heterogeneous solid acid catalysts. Appl. Catal. A Gen. 2016;524:173–181. doi: 10.1016/j.apcata.2016.06.024. DOI

Haincova E., Hajkova P., Kohout J. Prepregs for Temperature Resistant Composites. Materials. 2019;12:4012. doi: 10.3390/ma12234012. PubMed DOI PMC

Haincova E., Hajkova P. Effect of Boric Acid Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites. Materials. 2020;13:5409. doi: 10.3390/ma13235409. PubMed DOI PMC

Mužek M.N., Svilović S., Zelić J. Fly ash-based geopolymeric adsorbent for copper ion removal from wastewater. Desalination Water Treat. 2013;52:2519–2526. doi: 10.1080/19443994.2013.792015. DOI

Xia M., Sanjayan J. Method of formulating geopolymer for 3D printing for construction applications. Mater. Des. 2016;110:382–390. doi: 10.1016/j.matdes.2016.07.136. DOI

Lancellotti I., Barbieri L., Leonelli C. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing; Oxford, UK: 2015. 20-Use of alkali-activated concrete binders for toxic waste immobilization; pp. 539–554.

Kohout J., Koutnik P. Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Materials. 2020;13:2395. doi: 10.3390/ma13102395. PubMed DOI PMC

Kai M.-F., Dai J.-G. Understanding geopolymer binder-aggregate interfacial characteristics at molecular level. Cem. Concr. Res. 2021;149:106582. doi: 10.1016/j.cemconres.2021.106582. DOI

Thang N.H., Nhung L.T., Quyen P.V.T.H., Phong D.T., Khe D.T., Van Phuc N. Development of heat resistant geopolymer-based materials from red mud and rice husk ash; Proceedings of the 2nd International Conference on Applied Sciences; Ho Chi Minh City, Vietnam. 24–25 May 2018;

Hájková P. Kaolinite Claystone-Based Geopolymer Materials: Effect of Chemical Composition and Curing Conditions. Minerals. 2018;8:444. doi: 10.3390/min8100444. DOI

Koutník P., Soukup A., Bezucha P., Šafář J., Kohout J. Low viscosity metakaolinite based geopolymer binders. Constr. Build. Mater. 2020;230:116978. doi: 10.1016/j.conbuildmat.2019.116978. DOI

Kohout J., Koutník P., Bezucha P., Kwoczynski Z. Leachability of the metakaolinite-rich materials in different alkaline solutions. Mater. Today Commun. 2019;21:100669. doi: 10.1016/j.mtcomm.2019.100669. DOI

Amran Y.H.M., Alyousef R., Alabduljabbar H., El-Zeadani M. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020;251:119679. doi: 10.1016/j.jclepro.2019.119679. DOI

Xu H., Van Deventer J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000;59:247–266. doi: 10.1016/S0301-7516(99)00074-5. DOI

Yao X., Zhang Z., Zhu H., Chen Y. Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry. Thermochim. Acta. 2009;493:49–54. doi: 10.1016/j.tca.2009.04.002. DOI

Yan D., Xie L., Qian X., Ruan S., Zeng Q. Compositional Dependence of Pore Structure, Strengthand Freezing-Thawing Resistance of Metakaolin-Based Geopolymers. Materials. 2020;13:2973. doi: 10.3390/ma13132973. PubMed DOI PMC

Duxson P., Mallicoat S.W., Lukey G.C., Kriven W.M., van Deventer J.S.J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007;292:8–20. doi: 10.1016/j.colsurfa.2006.05.044. DOI

Lemougna P.N., Chinje Melo U.F., Delplancke M.-P., Rahier H. Influence of the activating solution composition on the stability and thermo-mechanical properties of inorganic polymers (geopolymers) from volcanic ash. Constr. Build. Mater. 2013;48:278–286. doi: 10.1016/j.conbuildmat.2013.06.089. DOI

Vitola L., Pundiene I., Pranckeviciene J., Bajare D. The Impact of the Amount of Water Used in Activation Solution and the Initial Temperature of Paste on the Rheological Behaviour and Structural Evolution of Metakaolin-Based Geopolymer Pastes. Sustainability. 2020;12:8216. doi: 10.3390/su12198216. DOI

Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010;24:1176–1183. doi: 10.1016/j.conbuildmat.2009.12.023. DOI

Lahoti M., Wong K.K., Yang E.-H., Tan K.H. Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceram. Int. 2018;44:5726–5734. doi: 10.1016/j.ceramint.2017.12.226. DOI

Ozer I., Soyer-Uzun S. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios. Ceram. Int. 2015;41:10192–10198. doi: 10.1016/j.ceramint.2015.04.125. DOI

Silva P.D., Sagoe-Crenstil K., Sirivivatnanon V. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cem. Concr. Res. 2007;37:512–518. doi: 10.1016/j.cemconres.2007.01.003. DOI

Hou L., Li J., Lu Z.-y. Effect of Na/Al on formation, structures and properties of metakaolin based Na-geopolymer. Constr. Build. Mater. 2019;226:250–258. doi: 10.1016/j.conbuildmat.2019.07.171. DOI

Liu J., Li X., Lu Y., Bai X. Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer. Constr. Build. Mater. 2020;263:120653. doi: 10.1016/j.conbuildmat.2020.120653. DOI

Lahoti M., Narang P., Tan K.H., Yang E.-H. Mix design factors and strength prediction of metakaolin-based geopolymer. Ceram. Int. 2017;43:11433–11441. doi: 10.1016/j.ceramint.2017.06.006. DOI

Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., van Deventer J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005;269:47–58. doi: 10.1016/j.colsurfa.2005.06.060. DOI

Tawfik A., Abd El-Raoof F., Katsuki H., MacKenzie K.J.D., Komarneni S. K-Based Geopolymer from metakaolin: Roles of K/Al ratio and water or steam Curing at different temperatures. Mater. Constr. 2016;66:e081. doi: 10.3989/mc.2016.03115. DOI

Koutnik P. Comparison of Kaolin and Kaolinitic Claystones as Raw Materials for Preparing Meta-Kaolinite-Based Geopolymers. Ceramics–Silikaty. 2019;63:110–123. doi: 10.13168/cs.2019.0003. DOI

Barbosa V.F.F., MacKenzie K.J.D. Synthesis and thermal behaviour of potassium sialate geopolymers. Mater. Lett. 2003;57:1477–1482. doi: 10.1016/S0167-577X(02)01009-1. DOI

Lin T.S., Jia D.C., He P.G., Wang M.R. Thermo-mechanical and Microstructural Characterization of Geopolymers with α-Al2O3 Particle Filler. Int. J. Thermophys. 2009;30:1568–1577. doi: 10.1007/s10765-009-0636-9. DOI

Duxson P., Lukey G.C., van Deventer J.S.J. Thermal evolution of metakaolin geopolymers: Part 1–Physical evolution. J. Non-Cryst. Solids. 2006;352:5541–5555. doi: 10.1016/j.jnoncrysol.2006.09.019. DOI

Medri V., Fabbri S., Ruffini A., Dedecek J., Vaccari A. SiC-based refractory paints prepared with alkali aluminosilicate binders. J. Eur. Ceram. Soc. 2011;31:2155–2165. doi: 10.1016/j.jeurceramsoc.2011.05.006. DOI

Kuenzel C., Vandeperre L.J., Donatello S., Boccaccini A.R., Cheeseman C., Brown P. Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers. J. Am. Ceram. Soc. 2012;95:3270–3277. doi: 10.1111/j.1551-2916.2012.05380.x. DOI

Kovářík T., Rieger D., Kadlec J., Křenek T., Kullová L., Pola M., Bělský P., Franče P., Říha J. Thermomechanical properties of particle-reinforced geopolymer composite with various aggregate gradation of fine ceramic filler. Constr. Build. Mater. 2017;143:599–606. doi: 10.1016/j.conbuildmat.2017.03.134. DOI

Westman A.E.R. The Thermal Expansion of Fireclay Bricks. Univ. Ill. Bull. 1928;26:1–30.

Okada K., Ooyama A., Isobe T., Kameshima Y., Nakajima A., MacKenzie K.J.D. Water retention properties of porous geopolymers for use in cooling applications. J. Eur. Ceram. Soc. 2009;29:1917–1923. doi: 10.1016/j.jeurceramsoc.2008.11.006. DOI

Lemougna P.N., MacKenzie K.J.D., Melo U.F.C. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int. 2011;37:3011–3018. doi: 10.1016/j.ceramint.2011.05.002. DOI

Musil S.S., Kriven W.M., Biernacki J. In SituMechanical Properties of Chamotte Particulate Reinforced, Potassium Geopolymer. J. Am. Ceram. Soc. 2014;97:907–915. doi: 10.1111/jace.12736. DOI

Trindade A.C.C., Silva F.d.A., Alcamand H.A., Borges P.H.R. On The Mechanical Behavior of Metakaolin Based Geopolymers Under Elevated Temperatures. Mater. Res. 2017;20((Suppl. S2)):265–272. doi: 10.1590/1980-5373-mr-2017-0101. DOI

Rovnaník P. Effect of the aggregate type on the properties of alkali-activated slag subjected to high temperatures. Mater. Tehnol. 2015;49:709–713. doi: 10.17222/mit.2014.116. DOI

Fayyad S.M., Al-Marahleh G.S., Abu-Ein S.Q. Improvement of the Refractoriness under Load of Fire-Clay Refractory Bricks. Adv. Theor. Appl. Mech. 2012;5:161–172.

Zhang M., Zhao M., Zhang G., El-Korchi T., Tao M. A multiscale investigation of reaction kinetics, phase formation, and mechanical properties of metakaolin geopolymers. Cem. Concr. Compos. 2017;78:21–32. doi: 10.1016/j.cemconcomp.2016.12.010. DOI

Bell J.L., Driemeyer P.E., Kriven W.M. Formation of Ceramics from Metakaolin-Based Geopolymers. Part II: K-Based Geopolymer. J. Am. Ceram. Soc. 2009;92:607–615. doi: 10.1111/j.1551-2916.2008.02922.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...