Effect of Potassium Phosphate Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites

. 2021 Dec 22 ; 15 (1) : . [epub] 20211222

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35009207

Grantová podpora
LM2018119 Ministry of Education, Youth and Sports of the Czech Republic

Six matrices based on alkali-activated aluminosilicate with different amounts of potassium phosphate were prepared for the production of six-layer composite plates. The addition of potassium phosphate in the matrix was 2 wt%, 4 wt%, 6 wt%, 8 wt% and 10 wt% of its total weight. The matrix without the potassium phosphate was also prepared. The aim of this study was to determine whether this addition has an effect on the tensile strength or Young's modulus of composites at temperatures up to 800 °C. Changes in the thickness and weight of the samples after this temperature were also monitored. Carbon plain weave fabric was chosen for the preparation of the composites. The results show that under normal conditions, the addition of potassium phosphate has no significant effect on the mechanical properties; the highest measured tensile strengths were around 350 MPa. However, at temperatures of 600 °C and 800 °C the addition of potassium phosphate had a positive effect, with the tensile strength of the composites being up to 300% higher than the composites without the addition. The highest measured values of composites after one hour at 600 °C were higher than 100 MPa and after 1 h at 800 °C higher than 85 MPa.

Zobrazit více v PubMed

Davidovits J. Geopolymers. J. Therm. Anal. Calorim. 1991;37:1633–1656. doi: 10.1007/BF01912193. DOI

Barbosa V.F., MacKenzie K. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 2003;38:319–331. doi: 10.1016/S0025-5408(02)01022-X. DOI

Papakonstantinou C., Balaguru P., Lyon R. Comparative study of high temperature composites. Compos. Part B Eng. 2001;32:637–649. doi: 10.1016/S1359-8368(01)00042-7. DOI

Cheng T., Chiu J. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 2003;16:205–210. doi: 10.1016/S0892-6875(03)00008-6. DOI

Puligilla S., Mondal P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem. Concr. Res. 2013;43:70–80. doi: 10.1016/j.cemconres.2012.10.004. DOI

Hwang C.-L., Huynh T.-P. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr. Build. Mater. 2015;101:1–9. doi: 10.1016/j.conbuildmat.2015.10.025. DOI

Bewa C.N., Tchakouté H.K., Banenzoué C., Cakanou L., Mbakop T.T., Kamseu E., Rüscher C.H. Acid-based geopolymers using waste fired brick and different metakaolins as raw materials. Appl. Clay Sci. 2020;198:105813. doi: 10.1016/j.clay.2020.105813. DOI

Wang H., Li H., Yan F. Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids Surf. A: Physicochem. Eng. Asp. 2005;268:1–6. doi: 10.1016/j.colsurfa.2005.01.016. DOI

Haincová E., Hájková P., Kohout J. Prepregs for Temperature Resistant Composites. Materials. 2019;12:4012. doi: 10.3390/ma12234012. PubMed DOI PMC

Haincová E., Hájková P. Effect of Boric Acid Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites. Materials. 2020;13:5409. doi: 10.3390/ma13235409. PubMed DOI PMC

Katsiki A., Hertel T., Tysmans T., Pontikes Y., Rahier H. Metakaolinite Phosphate Cementitious Matrix: Inorganic Polymer Obtained by Acidic Activation. Materials. 2019;12:442. doi: 10.3390/ma12030442. PubMed DOI PMC

Gao L., Zheng Y., Tang Y., Yu J., Yu X., Liu B. Effect of phosphoric acid content on the microstructure and compressive strength of phosphoric acid-based metakaolin geopolymers. Heliyon. 2020;6:e03853. doi: 10.1016/j.heliyon.2020.e03853. PubMed DOI PMC

Khabbouchi M., Hosni K., Mezni M., Zanelli C., Doggy M., Dondi M., Srasra E. Interaction of metakaolin-phosphoric acid and their structural evolution at high temperature. Appl. Clay Sci. 2017;146:510–516. doi: 10.1016/j.clay.2017.07.006. DOI

Majdoubi H., Haddaji Y., Mansouri S., Alaoui D., Tamraoui Y., Semlal N., Oumam M., Manoun B., Hannache H. Thermal, mechanical and microstructural properties of acidic geopolymer based on moroccan kaolinitic clay. J. Build. Eng. 2021;35:102078. doi: 10.1016/j.jobe.2020.102078. DOI

Hung T., Louda P., Kroisova D., Bortnovsky O., Xiem N. New Generation of Geopolymer Composite for Fire-Resistance. In: Tesinova P., editor. Advances in Composite Materials. Intech Europe; Rijeka, Croatia: 2011. pp. 73–92.

He Y., Liu L., He L., Cui X. Characterization of chemosynthetic H3PO4–Al2O3–2SiO2 geopolymers. Ceram. Int. 2016;42:10908–10912. doi: 10.1016/j.ceramint.2016.03.224. DOI

Zribi M., Samet B., Baklouti S. Effect of curing temperature on the synthesis, structure and mechanical properties of phosphate-based geopolymers. J. Non-Cryst. Solids. 2019;511:62–67. doi: 10.1016/j.jnoncrysol.2019.01.032. DOI

Zribi M., Samet B., Baklouti S. Mechanical, microstructural and structural investigation of phosphate-based geopolymers with respect to P/Al molar ratio. J. Solid State Chem. 2020;281:121025. doi: 10.1016/j.jssc.2019.121025. DOI

Buchwald A., Vicent M., Kriegel R., Kaps C., Monzó M., Barba-Juan A. Geopolymeric binders with different fine fillers—Phase transformations at high temperatures. Appl. Clay Sci. 2009;46:190–195. doi: 10.1016/j.clay.2009.08.002. DOI

Zhang H.-Y., Kodur V., Cao L., Qi S.-L. Fiber Reinforced Geopolymers for Fire Resistance Applications. Procedia Eng. 2014;71:153–158. doi: 10.1016/j.proeng.2014.04.022. DOI

He P., Jia D., Lin T., Wang M., Zhou Y. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram. Int. 2010;36:1447–1453. doi: 10.1016/j.ceramint.2010.02.012. DOI

Aziz T., Fan H., Khan F.U., Ullah R., Haq F., Iqbal M., Ullah A. Synthesis of Carboxymethyl Starch-Bio-Based Epoxy Resin and their Impact on Mechanical Properties. Z. Für Phys. Chem. 2020;234:1759–1769. doi: 10.1515/zpch-2019-1434. DOI

Khattak N.S., Ahmad A.S., Shah L.A., Ara L., Farooq M., Sohail M., Kadir S.I. Thermal and Rheological Study of Nanocomposites, Reinforced with Bi-Phase Ceramic Nanoparticles. Z. Für Phys. Chem. 2019;233:1233–1246. doi: 10.1515/zpch-2018-1338. DOI

Duxson P., Provis J., Lukey G.C., Van Deventer J.S. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007;37:1590–1597. doi: 10.1016/j.cemconres.2007.08.018. DOI

Lyon R.E., Balaguru P.N., Foden A., Sorathia U., Davidovits J., Davidovics M. Fire-resistant aluminosilicate composites. Fire Mater. 1997;21:67–73. doi: 10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N. DOI

Krystek J., Laš V., Pompe V., Hájková P. Tensile and bending test of carbon/epoxy and carbon/geopolymer composites after temperature conditioning. MATEC Web Conf. 2018;157:05014. doi: 10.1051/matecconf/201815705014. DOI

Zhang J., Provis J.L., Feng D., van Deventer J.S. Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+ J. Hazard. Mater. 2008;157:587–598. doi: 10.1016/j.jhazmat.2008.01.053. PubMed DOI

McAlorum J., Perry M., Vlachakis C., Biondi L., Lavoie B. Robotic spray coating of self-sensing metakaolin geopolymer for concrete monitoring. Autom. Constr. 2021;121:103415. doi: 10.1016/j.autcon.2020.103415. DOI

Şahin O., Ilcan H., Ateşli A.T., Kul A., Yıldırım G., Şahmaran M. Construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing. Cem. Concr. Compos. 2021;121:104088. doi: 10.1016/j.cemconcomp.2021.104088. DOI

Ma S., Yang H., Zhao S., He P., Zhang Z., Duan X., Yang Z., Jia D., Zhou Y. 3D-printing of architectured short carbon fiber-geopolymer composite. Compos. Part B Eng. 2021;226:109348. doi: 10.1016/j.compositesb.2021.109348. DOI

Hájková P. Kaolinite Claystone-Based Geopolymer Materials: Effect of Chemical Composition and Curing Conditions. Minerals. 2018;8:444. doi: 10.3390/min8100444. DOI

Koutník P., Soukup A., Bezucha P., Šafář J., Hájková P., Čmelík J. Comparison of Kaolin and Kaolinitic Claystones as Raw Materials for Preparing Meta-Kaolinite-Based Geopolymers. Ceram. –Silikáty. 2019;63:110–123. doi: 10.13168/cs.2019.0003. DOI

Prud’Homme E., Michaud P., Joussein E., Peyratout C., Smith A., Arrii-Clacens S., Clacens J., Rossignol S. Silica fume as porogent agent in geo-materials at low temperature. J. Eur. Ceram. Soc. 2010;30:1641–1648. doi: 10.1016/j.jeurceramsoc.2010.01.014. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...