Effect of Potassium Phosphate Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018119
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
35009207
PubMed Central
PMC8745847
DOI
10.3390/ma15010061
PII: ma15010061
Knihovny.cz E-zdroje
- Klíčová slova
- aluminosilicate, composite, inorganic matrix, phosphate, prepreg, tensile strength,
- Publikační typ
- časopisecké články MeSH
Six matrices based on alkali-activated aluminosilicate with different amounts of potassium phosphate were prepared for the production of six-layer composite plates. The addition of potassium phosphate in the matrix was 2 wt%, 4 wt%, 6 wt%, 8 wt% and 10 wt% of its total weight. The matrix without the potassium phosphate was also prepared. The aim of this study was to determine whether this addition has an effect on the tensile strength or Young's modulus of composites at temperatures up to 800 °C. Changes in the thickness and weight of the samples after this temperature were also monitored. Carbon plain weave fabric was chosen for the preparation of the composites. The results show that under normal conditions, the addition of potassium phosphate has no significant effect on the mechanical properties; the highest measured tensile strengths were around 350 MPa. However, at temperatures of 600 °C and 800 °C the addition of potassium phosphate had a positive effect, with the tensile strength of the composites being up to 300% higher than the composites without the addition. The highest measured values of composites after one hour at 600 °C were higher than 100 MPa and after 1 h at 800 °C higher than 85 MPa.
Zobrazit více v PubMed
Davidovits J. Geopolymers. J. Therm. Anal. Calorim. 1991;37:1633–1656. doi: 10.1007/BF01912193. DOI
Barbosa V.F., MacKenzie K. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 2003;38:319–331. doi: 10.1016/S0025-5408(02)01022-X. DOI
Papakonstantinou C., Balaguru P., Lyon R. Comparative study of high temperature composites. Compos. Part B Eng. 2001;32:637–649. doi: 10.1016/S1359-8368(01)00042-7. DOI
Cheng T., Chiu J. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 2003;16:205–210. doi: 10.1016/S0892-6875(03)00008-6. DOI
Puligilla S., Mondal P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem. Concr. Res. 2013;43:70–80. doi: 10.1016/j.cemconres.2012.10.004. DOI
Hwang C.-L., Huynh T.-P. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr. Build. Mater. 2015;101:1–9. doi: 10.1016/j.conbuildmat.2015.10.025. DOI
Bewa C.N., Tchakouté H.K., Banenzoué C., Cakanou L., Mbakop T.T., Kamseu E., Rüscher C.H. Acid-based geopolymers using waste fired brick and different metakaolins as raw materials. Appl. Clay Sci. 2020;198:105813. doi: 10.1016/j.clay.2020.105813. DOI
Wang H., Li H., Yan F. Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids Surf. A: Physicochem. Eng. Asp. 2005;268:1–6. doi: 10.1016/j.colsurfa.2005.01.016. DOI
Haincová E., Hájková P., Kohout J. Prepregs for Temperature Resistant Composites. Materials. 2019;12:4012. doi: 10.3390/ma12234012. PubMed DOI PMC
Haincová E., Hájková P. Effect of Boric Acid Content in Aluminosilicate Matrix on Mechanical Properties of Carbon Prepreg Composites. Materials. 2020;13:5409. doi: 10.3390/ma13235409. PubMed DOI PMC
Katsiki A., Hertel T., Tysmans T., Pontikes Y., Rahier H. Metakaolinite Phosphate Cementitious Matrix: Inorganic Polymer Obtained by Acidic Activation. Materials. 2019;12:442. doi: 10.3390/ma12030442. PubMed DOI PMC
Gao L., Zheng Y., Tang Y., Yu J., Yu X., Liu B. Effect of phosphoric acid content on the microstructure and compressive strength of phosphoric acid-based metakaolin geopolymers. Heliyon. 2020;6:e03853. doi: 10.1016/j.heliyon.2020.e03853. PubMed DOI PMC
Khabbouchi M., Hosni K., Mezni M., Zanelli C., Doggy M., Dondi M., Srasra E. Interaction of metakaolin-phosphoric acid and their structural evolution at high temperature. Appl. Clay Sci. 2017;146:510–516. doi: 10.1016/j.clay.2017.07.006. DOI
Majdoubi H., Haddaji Y., Mansouri S., Alaoui D., Tamraoui Y., Semlal N., Oumam M., Manoun B., Hannache H. Thermal, mechanical and microstructural properties of acidic geopolymer based on moroccan kaolinitic clay. J. Build. Eng. 2021;35:102078. doi: 10.1016/j.jobe.2020.102078. DOI
Hung T., Louda P., Kroisova D., Bortnovsky O., Xiem N. New Generation of Geopolymer Composite for Fire-Resistance. In: Tesinova P., editor. Advances in Composite Materials. Intech Europe; Rijeka, Croatia: 2011. pp. 73–92.
He Y., Liu L., He L., Cui X. Characterization of chemosynthetic H3PO4–Al2O3–2SiO2 geopolymers. Ceram. Int. 2016;42:10908–10912. doi: 10.1016/j.ceramint.2016.03.224. DOI
Zribi M., Samet B., Baklouti S. Effect of curing temperature on the synthesis, structure and mechanical properties of phosphate-based geopolymers. J. Non-Cryst. Solids. 2019;511:62–67. doi: 10.1016/j.jnoncrysol.2019.01.032. DOI
Zribi M., Samet B., Baklouti S. Mechanical, microstructural and structural investigation of phosphate-based geopolymers with respect to P/Al molar ratio. J. Solid State Chem. 2020;281:121025. doi: 10.1016/j.jssc.2019.121025. DOI
Buchwald A., Vicent M., Kriegel R., Kaps C., Monzó M., Barba-Juan A. Geopolymeric binders with different fine fillers—Phase transformations at high temperatures. Appl. Clay Sci. 2009;46:190–195. doi: 10.1016/j.clay.2009.08.002. DOI
Zhang H.-Y., Kodur V., Cao L., Qi S.-L. Fiber Reinforced Geopolymers for Fire Resistance Applications. Procedia Eng. 2014;71:153–158. doi: 10.1016/j.proeng.2014.04.022. DOI
He P., Jia D., Lin T., Wang M., Zhou Y. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram. Int. 2010;36:1447–1453. doi: 10.1016/j.ceramint.2010.02.012. DOI
Aziz T., Fan H., Khan F.U., Ullah R., Haq F., Iqbal M., Ullah A. Synthesis of Carboxymethyl Starch-Bio-Based Epoxy Resin and their Impact on Mechanical Properties. Z. Für Phys. Chem. 2020;234:1759–1769. doi: 10.1515/zpch-2019-1434. DOI
Khattak N.S., Ahmad A.S., Shah L.A., Ara L., Farooq M., Sohail M., Kadir S.I. Thermal and Rheological Study of Nanocomposites, Reinforced with Bi-Phase Ceramic Nanoparticles. Z. Für Phys. Chem. 2019;233:1233–1246. doi: 10.1515/zpch-2018-1338. DOI
Duxson P., Provis J., Lukey G.C., Van Deventer J.S. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007;37:1590–1597. doi: 10.1016/j.cemconres.2007.08.018. DOI
Lyon R.E., Balaguru P.N., Foden A., Sorathia U., Davidovits J., Davidovics M. Fire-resistant aluminosilicate composites. Fire Mater. 1997;21:67–73. doi: 10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N. DOI
Krystek J., Laš V., Pompe V., Hájková P. Tensile and bending test of carbon/epoxy and carbon/geopolymer composites after temperature conditioning. MATEC Web Conf. 2018;157:05014. doi: 10.1051/matecconf/201815705014. DOI
Zhang J., Provis J.L., Feng D., van Deventer J.S. Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+ J. Hazard. Mater. 2008;157:587–598. doi: 10.1016/j.jhazmat.2008.01.053. PubMed DOI
McAlorum J., Perry M., Vlachakis C., Biondi L., Lavoie B. Robotic spray coating of self-sensing metakaolin geopolymer for concrete monitoring. Autom. Constr. 2021;121:103415. doi: 10.1016/j.autcon.2020.103415. DOI
Şahin O., Ilcan H., Ateşli A.T., Kul A., Yıldırım G., Şahmaran M. Construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing. Cem. Concr. Compos. 2021;121:104088. doi: 10.1016/j.cemconcomp.2021.104088. DOI
Ma S., Yang H., Zhao S., He P., Zhang Z., Duan X., Yang Z., Jia D., Zhou Y. 3D-printing of architectured short carbon fiber-geopolymer composite. Compos. Part B Eng. 2021;226:109348. doi: 10.1016/j.compositesb.2021.109348. DOI
Hájková P. Kaolinite Claystone-Based Geopolymer Materials: Effect of Chemical Composition and Curing Conditions. Minerals. 2018;8:444. doi: 10.3390/min8100444. DOI
Koutník P., Soukup A., Bezucha P., Šafář J., Hájková P., Čmelík J. Comparison of Kaolin and Kaolinitic Claystones as Raw Materials for Preparing Meta-Kaolinite-Based Geopolymers. Ceram. –Silikáty. 2019;63:110–123. doi: 10.13168/cs.2019.0003. DOI
Prud’Homme E., Michaud P., Joussein E., Peyratout C., Smith A., Arrii-Clacens S., Clacens J., Rossignol S. Silica fume as porogent agent in geo-materials at low temperature. J. Eur. Ceram. Soc. 2010;30:1641–1648. doi: 10.1016/j.jeurceramsoc.2010.01.014. DOI