polystyrene Dotaz Zobrazit nápovědu
This study presents a proof of principle concept for a two-dimensional bioprinted glucose sensor on Petri dishes that allows for glucose measurements in cell culture medium. To improve bioink adhesion, the polystyrene surfaces of standard Petri dishes are activated with argon plasma, which increases roughness and hydrophilicity. The bioink containing the sensor chemistry - namely fluorescently labeled ConA/Dextran embedded in alginate microbeads - was printed on the activated Petri dishes with an extrusion-based bioprinter. The printed sensor showed good stability and adhesive properties on polystyrene. The glucose concentration was examined using a standard fluorescence microscope with filters adapted to the emission wavelength of the donor and reference dyes. The printed glucose sensor showed high sensitivity and good linearity in a physiologically relevant range of glucose concentrations.
This present mini-review covers recently published results on Cu(I) and Cu(II) complexes immobilized on polystyrene carriers, which are used as heterogeneous, eco-friendly reusable catalysts applied for carbon-carbon and carbon-nitrogen forming reactions. Recent advances and trends in this area are demonstrated in the examples of oxidative homocoupling of terminal alkynes, the synthesis of propargylamines, nitroaldolization reactions, azide alkyne cycloaddition,N-arylation of nitrogen containing compounds, aza-Michael additions, asymmetric Friedel-Crafts reactions, asymmetric Mukaiyama aldol reactions, and asymmetric 1,3-dipolar cycloaddition of azomethine ylides. The type of polystyrene matrix used for the immobilization of complexes is discussed in this paper, and particularly, the efficiency of the catalysts from the point of view of the overall reaction yield, and possible enantioselectivity and potential reusing, is reviewed.
In this work, a novel cation exchange membrane, PSEBS SU22 was deployed in microbial fuel cells (MFCs) to examine system efficacy in line with membrane characteristics and inoculum source. It turned out that compared to a reference membrane (Nafion), employing PSEBS SU22 resulted in higher current density and electricity generation kinetics, while the electron recoveries were similar (19-28%). These outcomes indicated more beneficial ion transfer features and lower mass transfer-related losses in the PSEBS SU22-MFCs, supported by membrane water uptake, ion exchange capacity, ionic conductivity and permselectivity. By re-activating the membranes after (bio)foulant removal, PSEBS SU22 regained nearly its initial conductivity, highlighting a salient functional stability. Although the particular inoculum showed a clear effect on the microbial composition of the membrane biofouling layers, the dominance of aerobic species was revealed in all cases. Considering all the findings, the PSEBS SU22 seems to be promising for application in MFCs.
Photodynamic inactivation (PDI) is a promising approach for the efficient killing of pathogenic microbes. In this study, the photodynamic effect of sulfonated polystyrene nanoparticles with encapsulated hydrophobic 5,10,15,20-tetraphenylporphyrin (TPP-NP) photosensitizers on Gram-positive (including multi-resistant) and Gram-negative bacterial strains was investigated. The cell viability was determined by the colony forming unit method. The results showed no dark cytotoxicity but high phototoxicity within the tested conditions. Gram-positive bacteria were more sensitive to TPP-NPs than Gram-negative bacteria. Atomic force microscopy was used to detect changes in the morphological properties of bacteria before and after the PDI treatment.
- MeSH
- Bacteria účinky léků účinky záření MeSH
- fotochemické procesy * MeSH
- fotochemoterapie metody MeSH
- mikroskopie atomárních sil MeSH
- nanočástice * chemie MeSH
- polystyreny * chemie MeSH
- porfyriny aplikace a dávkování chemie MeSH
- příprava léků * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hydrophobic fibrous slippery liquid-infused porous surfaces (SLIPS) were fabricated by electrospinning polydimethylsiloxane (PDMS) and polystyrene (PS) as a carrier polymer on plasma-treated polyethylene (PE) and polyurethane (PU) substrates. Subsequent infusion of blackseed oil (BSO) into the porous structures was applied for the preparation of the SLIPS. SLIPS with infused lubricants can act as a repellency layer and play an important role in the prevention of biofilm formation. The effect of polymer solutions used in the electrospinning process was investigated to obtain well-defined hydrophobic fibrous structures. The surface properties were analyzed through various optical, macroscopic and spectroscopic techniques. A comprehensive investigation of the surface chemistry, surface morphology/topography, and mechanical properties was carried out on selected samples at optimized conditions. The electrospun fibers prepared using a mixture of PDMS/PS in the ratio of 1:1:10 (g/g/mL) using tetrahydrofuran (THF) solvent showed the best results in terms of fiber uniformity. The subsequent infusion of BSO into the fabricated PDMS/PS fiber mats exhibited slippery behavior regarding water droplets. Moreover, prepared SLIPS exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli bacterium strains.
- MeSH
- dimethylpolysiloxany * MeSH
- Escherichia coli MeSH
- polymery chemie MeSH
- polystyreny * MeSH
- poréznost MeSH
- Publikační typ
- časopisecké články MeSH