The Role of the Adipokines in the Most Common Gestational Complications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33321877
PubMed Central
PMC7762997
DOI
10.3390/ijms21249408
PII: ijms21249408
Knihovny.cz E-zdroje
- Klíčová slova
- adiponectin, apelin, chemerin, gestational diabetes, irisin, leptin, omentin, preeclampsia, resistin, visfatin,
- MeSH
- adipokiny metabolismus MeSH
- biologické markery metabolismus MeSH
- gestační diabetes metabolismus patologie MeSH
- lidé MeSH
- preeklampsie metabolismus patologie MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- adipokiny MeSH
- biologické markery MeSH
Adipocytokines are hormonally active molecules that are believed to play a key role in the regulation of crucial biological processes in the human body. Numerous experimental studies established significant alterations in the adipokine secretion patterns throughout pregnancy. The exact etiology of various gestational complications, such as gestational diabetes, preeclampsia, and fetal growth abnormalities, needs to be fully elucidated. The discovery of adipokines raised questions about their potential contribution to the molecular pathophysiology of those diseases. Multiple studies analyzed their local mRNA expression and circulating protein levels. However, most studies report conflicting results. Several adipokines such as leptin, resistin, irisin, apelin, chemerin, and omentin were proposed as potential novel early markers of heterogeneous gestational complications. The inclusion of the adipokines in the standard predictive multifactorial models could improve their prognostic values. Nonetheless, their independent diagnostic value is mostly insufficient to be implemented into standard clinical practice. Routine assessments of adipokine levels during pregnancy are not recommended in the management of both normal and complicated pregnancies. Based on the animal models (e.g., apelin and its receptors in the rodent preeclampsia models), future implementation of adipokines and their receptors as new therapeutic targets appears promising but requires further validation in humans.
Department of Anatomy Poznań University of Medical Sciences 60 781 Poznan Poland
Department of Histology and Embryology Poznań University of Medical Sciences 60 781 Poznan Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 7608 USA
Student's Scientific Society Poznan University of Medical Sciences 60 806 Poznan Poland
Zobrazit více v PubMed
Marques A., Peralta M., Naia A., Loureiro N., De Matos M.G. Prevalence of adult overweight and obesity in 20 European countries, 2014. Eur. J. Public Health. 2018;28:295–300. doi: 10.1093/eurpub/ckx143. PubMed DOI
Roberts J.M., Bell M.J. If we know so much about preeclampsia, why haven’t we cured the disease? J. Reprod. Immunol. 2013;99 doi: 10.1016/j.jri.2013.05.003. PubMed DOI PMC
Roberts J.M., Bodnar L.M., Patrick T.E., Powers R.W. The role of obesity in preeclampsia. Pregnancy Hypertens. 2011;1 doi: 10.1016/j.preghy.2010.10.013. PubMed DOI PMC
Catalano P.M. The impact of gestational diabetes and maternal obesity on the mother and her offspring. J. Dev. Orig. Health Dis. 2010;1:208–215. doi: 10.1017/S2040174410000115. PubMed DOI PMC
Haslam D.W., James W.P.T. Obesity. Lancet. 2005;366:1197–1209. doi: 10.1016/S0140-6736(05)67483-1. PubMed DOI
Monteiro R., Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010;2010 doi: 10.1155/2010/289645. PubMed DOI PMC
Bai Y., Sun Q. Macrophage recruitment in obese adipose tissue. Obes. Rev. 2015;16:127–136. doi: 10.1111/obr.12242. PubMed DOI PMC
Revelo X.S., Luck H., Winer S., Winer D.A. Morphological and inflammatory changes in visceral adipose tissue during obesity. Endocr. Pathol. 2014;25:93–101. doi: 10.1007/s12022-013-9288-1. PubMed DOI
Cao H. Adipocytokines in obesity and metabolic disease. J. Endocrinol. 2014;220:T47–T59. doi: 10.1530/JOE-13-0339. PubMed DOI PMC
Calvani M., Scarfone A., Granato L., Mora E.V., Nanni G., Castagneto M., Greco A.V., Manco M., Mingrone G. Restoration of Adiponectin Pulsatility in Severely Obese Subjects after Weight Loss. Diabetes. 2004;53:939–947. doi: 10.2337/diabetes.53.4.939. PubMed DOI
Reinehr T., Roth C., Menke T., Andler W. Adiponectin before and after weight loss in obese children. J. Clin. Endocrinol. Metab. 2004;89:3790–3794. doi: 10.1210/jc.2003-031925. PubMed DOI
Makki K., Froguel P., Wolowczuk I. Adipose Tissue in Obesity-Related Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflamm. 2013;2013 doi: 10.1155/2013/139239. PubMed DOI PMC
Karastergiou K., Mohamed-Ali V. The autocrine and paracrine roles of adipokines. Mol. Cell. Endocrinol. 2010;318:69–78. doi: 10.1016/j.mce.2009.11.011. PubMed DOI
Fasshauer M., Blüher M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015;36:461–470. doi: 10.1016/j.tips.2015.04.014. PubMed DOI
El Husseny M.W.A., Mamdouh M., Shaban S., Ibrahim Abushouk A., Zaki M.M.M., Ahmed O.M., Abdel-Daim M.M. Adipokines: Potential Therapeutic Targets for Vascular Dysfunction in Type II Diabetes Mellitus and Obesity. J. Diabetes Res. 2017;2017 doi: 10.1155/2017/8095926. PubMed DOI PMC
Mancuso P. The role of adipokines in chronic inflammation. ImmunoTargets Ther. 2016;5:47–56. doi: 10.2147/ITT.S73223. PubMed DOI PMC
Satoh N., Naruse M., Usui T., Tagami T., Suganami T., Yamada K., Kuzuya H., Shimatsu A., Ogawa Y. Leptin-to-adiponectin ratio as a potential atherogenic index in obese type 2 diabetic patients. Diabetes Care. 2004;27:2488–2490. doi: 10.2337/diacare.27.10.2488. PubMed DOI
Frühbeck G., Catalán V., Rodríguez A., Gómez-Ambrosi J. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte. 2018;7:57–62. doi: 10.1080/21623945.2017.1402151. PubMed DOI PMC
Supriya R., Tam B.T., Yu A.P., Lee P.H., Lai C.W., Cheng K.K., Yau S.Y., Chan L.W., Yung B.Y., Sheridan S., et al. Adipokines demonstrate the interacting influence of central obesity with other cardiometabolic risk factors of metabolic syndrome in Hong Kong Chinese adults. PLoS ONE. 2018;13:e0201585. doi: 10.1371/journal.pone.0201585. PubMed DOI PMC
Tune J.D., Goodwill A.G., Sassoon D.J., Mather K.J. Cardiovascular consequences of metabolic syndrome. Transl. Res. 2017;183:57–70. doi: 10.1016/j.trsl.2017.01.001. PubMed DOI PMC
Kelesidis T., Kelesidis I., Chou S., Mantzoros C.S. Narrative Review: The Role of Leptin in Human Physiology: Emerging Clinical Applications. Ann. Intern. Med. 2010;152:93. doi: 10.7326/0003-4819-152-2-201001190-00008. PubMed DOI PMC
Xiao W.Q., He J.R., Shen S.Y., Lu J.H., Kuang Y.S., Wei X.L., Qiu X. Maternal circulating leptin profile during pregnancy and gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2020;161:108041. doi: 10.1016/j.diabres.2020.108041. PubMed DOI
Friedman J.M., Halaas J.L. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–770. doi: 10.1038/27376. PubMed DOI
Houseknecht K.L., Portocarrero C.P. Leptin and its receptors: Regulators of whole-body energy homeostasis. Domest. Anim. Endocrinol. 1998;15:457–475. doi: 10.1016/S0739-7240(98)00035-6. PubMed DOI
Iciek R., Wender-Ozegowska E., Zawiejska A., Mikolajczak P., Mrozikiewicz P.M., Pietryga M., Brazert J. Placental leptin and its receptor genes expression in pregnancies complicated by type 1 diabetes. J. Physiol. Pharmacol. 2013;64:579–585. PubMed
Lepercq J., Challier J.C., Guerre-Millo M., Cauzac M., Vidal H., Hauguel-De Mouzon S. Prenatal leptin production: Evidence that fetal adipose tissue produces leptin. J. Clin. Endocrinol. Metab. 2001;86:2409–2413. doi: 10.1210/jcem.86.6.7529. PubMed DOI
Hoggard N., Haggarty P., Thomas L., Lea R. Leptin expression in placental and fetal tissues: Does leptin have a functional role? Biochem. Soc. Trans. 2001;29:57. doi: 10.1042/bst0290057. PubMed DOI
González R.R., Simón C., Caballero-Campo P., Norman R., Chardonnens D., Devoto L., Bischof P. Leptin and reproduction. Hum. Reprod. Update. 2000;6:290–300. doi: 10.1093/humupd/6.3.290. PubMed DOI
Jin L., Zhang S., Burguera B.G., Couce M.E., Osamura R.Y., Kulig E., Lloyd R.V. Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinology. 2000;141:333–339. doi: 10.1210/endo.141.1.7260. PubMed DOI
Karlsson C., Lindell K., Svensson E., Bergh C., Lind P., Billig H., Carlsson L.M.S., Carlsson B. Expression of Functional Leptin Receptors in the Human Ovary. J. Clin. Endocrinol. Metab. 1997;82:4144–4148. doi: 10.1210/jc.82.12.4144. PubMed DOI
Kawamura K., Sato N., Fukuda J., Kodama H., Kumagai J., Tanikawa H., Nakamura A., Tanaka T. Leptin promotes the development of mouse preimplantation embryos in vitro. Endocrinology. 2002;143:1922–1931. doi: 10.1210/endo.143.5.8818. PubMed DOI
Cervero A., Horcajadas J.A., Domínguez F., Pellicer A., Simón C. Leptin system in embryo development and implantation: A protein in search of a function. Reprod. Biomed. Online. 2005;10:217–223. doi: 10.1016/S1472-6483(10)60943-1. PubMed DOI
Pérez-Pérez A., Maymó J.L., Gambino Y.P., Guadix P., Dueñas J.L., Varone C.L., Sánchez-Margalet V. Activated translation signaling in placenta from pregnant women with gestational diabetes mellitus: Possible role of leptin. Horm. Metab. Res. 2013;45:436–442. doi: 10.1055/s-0032-1333276. PubMed DOI
Lepercq J., Cauzac M., Lahlou N., Timsit J., Girard J., Auwerx J., Mouzon S.H. De Overexpression of placental leptin in diabetic pregnancy: A critical role for insulin. Diabetes. 1998;47:847–850. doi: 10.2337/diabetes.47.5.847. PubMed DOI
Uzelac P.S., Li X., Lin J., Neese L.D., Lin L., Nakajima S.T., Bohler H., Lei Z. Dysregulation of Leptin and Testosterone Production and Their Receptor Expression in the Human Placenta with Gestational Diabetes Mellitus. Placenta. 2010;31:581–588. doi: 10.1016/j.placenta.2010.04.002. PubMed DOI
Côté S., Gagné-Ouellet V., Guay S.P., Allard C., Houde A.A., Perron P., Baillargeon J.P., Gaudet D., Guérin R., Brisson D., et al. PPARGC1α gene DNA methylation variations in human placenta mediate the link between maternal hyperglycemia and leptin levels in newborns. Clin. Epigenetics. 2016;8:72. doi: 10.1186/s13148-016-0239-9. PubMed DOI PMC
Miehle K., Stepan H., Fasshauer M. Leptin, adiponectin and other adipokines in gestational diabetes mellitus and pre-eclampsia. Clin. Endocrinol. Oxf. 2012;76:2–11. doi: 10.1111/j.1365-2265.2011.04234.x. PubMed DOI
Pérez-Pérez A., Maymó J., Gambino Y., Guadix P., Dueñas J.L., Varone C., Sánchez-Margalet V. Insulin enhances leptin expression in human trophoblastic cells. Biol. Reprod. 2013;89:20. doi: 10.1095/biolreprod.113.109348. PubMed DOI
Pérez-Pérez A., Guadix P., Maymó J., Dueñas J.L., Varone C., Fernández-Sánchez M., Sánchez-Margalet V. Insulin and Leptin Signaling in Placenta from Gestational Diabetic Subjects. Horm. Metab. Res. 2015;48:62–69. doi: 10.1055/s-0035-1559722. PubMed DOI
Kautzky-Willer A., Pacini G., Tura A., Bieglmayer C., Schneider B., Ludvik B., Prager R., Waldhäusl W. Increased plasma leptin in gestational diabetes. Diabetologia. 2001;44:164–172. doi: 10.1007/s001250051595. PubMed DOI
Rana S., Lemoine E., Granger J., Karumanchi S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019;124:1094–1112. doi: 10.1161/CIRCRESAHA.118.313276. PubMed DOI
Huppertz B. Placental origins of preeclampsia: Challenging the current hypothesis. Hypertension. 2008;51:970–975. doi: 10.1161/HYPERTENSIONAHA.107.107607. PubMed DOI
Song Y., Gao J., Qu Y., Wang S., Wang X., Liu J. Serum levels of leptin, adiponectin and resistin in relation to clinical characteristics in normal pregnancy and preeclampsia. Clin. Chim. Acta. 2016;458:133–137. doi: 10.1016/j.cca.2016.04.036. PubMed DOI
Kalinderis M., Papanikolaou A., Kalinderi K., Vyzantiadis T.A., Ioakimidou A., Tarlatzis B.C. Serum levels of leptin and IP-10 in preeclampsia compared to controls. Arch. Gynecol. Obstet. 2015;292:343–347. doi: 10.1007/s00404-015-3659-4. PubMed DOI
Taylor B.D., Ness R.B., Olsen J., Hougaard D.M., Skogstrand K., Roberts J.M., Haggerty C.L. Serum leptin measured in early pregnancy is higher in women with preeclampsia compared with normotensive pregnant women. Hypertension. 2015;65:594–599. doi: 10.1161/HYPERTENSIONAHA.114.03979. PubMed DOI PMC
Chrelias G., Makris G.M., Papanota A.M., Spathis A., Salamalekis G., Sergentanis T.N., Rizos D., Karakitsos P., Chrelias C. Serum inhibin and leptin: Risk factors for pre-eclampsia? Clin. Chim. Acta. 2016;463:84–87. doi: 10.1016/j.cca.2016.10.013. PubMed DOI
Thagaard I.N., Hedley P.L., Holm J.C., Lange T., Larsen T., Krebs L., Christiansen M. Leptin and Adiponectin as markers for preeclampsia in obese pregnant women, a cohort study. Pregnancy Hypertens. 2019;15:78–83. doi: 10.1016/j.preghy.2018.12.002. PubMed DOI
Pérez-Pérez A., Toro A., Vilariño-García T., Maymó J., Guadix P., Dueñas J.L., Fernández-Sánchez M., Varone C., Sánchez-Margalet V. Leptin action in normal and pathological pregnancies. J. Cell. Mol. Med. 2018;22:716–727. doi: 10.1111/jcmm.13369. PubMed DOI PMC
Zidan H.E., Rezk N.A., Alnemr A.A.A., Moniem M.I.A. Interleukin-17 and leptin genes polymorphisms and their levels in relation to recurrent pregnancy loss in Egyptian females. Immunogenetics. 2015;67:665–673. doi: 10.1007/s00251-015-0876-8. PubMed DOI
Laird S.M., Quinton N.D., Anstie B., Li T.C., Blakemore A.I.F. Leptin and leptin-binding activity in women with recurrent miscarriage: Correlation with pregnancy outcome. Hum. Reprod. 2001;16:2008–2013. doi: 10.1093/humrep/16.9.2008. PubMed DOI
Tommaselli G.A., Di Spiezio Sardo A., Di Carlo C., Bifulco G., Cerrota G., Cirillo D., Greco E., Nappi C. Do serum leptin levels have a role in the prediction of pregnancy outcome in case of threatened miscarriage? Clin. Endocrinol. Oxf. 2006;65:772–775. doi: 10.1111/j.1365-2265.2006.02665.x. PubMed DOI
Marchini G., Fried G., Östlund E., Hagenäs L. Plasma leptin in infants: Relations to birth weight and weight loss. Pediatrics. 1998;101:429–432. doi: 10.1542/peds.101.3.429. PubMed DOI
Shaarawy M., El-Mallah S.Y. Leptin and gestational weight gain: Relation of maternal and cord blood leptin to birth weight. J. Soc. Gynecol. Investig. 1999;6:70–73. doi: 10.1177/107155769900600204. PubMed DOI
Yildiz L., Avci B., Ingeç M. Umbilical cord and maternal blood leptin concentrations in intrauterine growth retardation. Clin. Chem. Lab. Med. 2002;40:1114–1117. doi: 10.1515/cclm.2002.195. PubMed DOI
Laivuori H., Gallaher M.J., Collura L., Crombleholme W.R., Markovic N., Rajakumar A., Hubel C.A., Roberts J.M., Powers R.W. Relationships between maternal plasma leptin, placental leptin mRNA and protein in normal pregnancy, pre-eclampsia and intrauterine growth restriction without pre-eclampsia. Mol. Hum. Reprod. 2006;12:551–556. doi: 10.1093/molehr/gal064. PubMed DOI
Ohashi K., Ouchi N., Matsuzawa Y. Anti-inflammatory and anti-atherogenic properties of adiponectin. Biochimie. 2012;94:2137–2142. doi: 10.1016/j.biochi.2012.06.008. PubMed DOI
Daniele A., Cammarata R., Masullo M., Nerone G., Finamore F., D’Andrea M., Pilla F., Oriani G. Analysis of Adiponectin Gene and Comparison of Its Expression in Two Different Pig Breeds. Obesity. 2008;16:1869–1874. doi: 10.1038/oby.2008.275. PubMed DOI
Kadowaki T., Yamauchi T. Adiponectin and Adiponectin Receptors. Endocr. Rev. 2005;26:439–451. doi: 10.1210/er.2005-0005. PubMed DOI
Fang H., Judd R.L. Comprehensive Physiology. Volume 8. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2018. Adiponectin Regulation and Function; pp. 1031–1063. PubMed
Nigro E., Scudiero O., Monaco M.L., Palmieri A., Mazzarella G., Costagliola C., Bianco A., Daniele A. New insight into adiponectin role in obesity and obesity-related diseases. BioMed Res. Int. 2014;2014 doi: 10.1155/2014/658913. PubMed DOI PMC
Lacroix M., Battista M.C., Doyon M., Ménard J., Ardilouze J.L., Perron P., Hivert M.F. Lower adiponectin levels at first trimester of pregnancy are associated with increased insulin resistance and higher risk of developing gestational diabetes mellitus. Diabetes Care. 2013;36:1577–1583. doi: 10.2337/dc12-1731. PubMed DOI PMC
Catalano P.M., Hoegh M., Minium J., Huston-Presley L., Bernard S., Kalhan S., Hauguel-De Mouzon S. Adiponectin in human pregnancy: Implications for regulation of glucose and lipid metabolism. Diabetologia. 2006;49:1677–1685. doi: 10.1007/s00125-006-0264-x. PubMed DOI
Mazaki-Tovi S., Kanety H., Pariente C., Hemi R., Wiser A., Schiff E., Sivan E. Maternal serum adiponectin levels during human pregnancy. J. Perinatol. 2007;27:77–81. doi: 10.1038/sj.jp.7211639. PubMed DOI
Engin A. Advances in Experimental Medicine and Biology. Volume 960. Springer; New York, NY, USA: 2017. Adiponectin-resistance in obesity; pp. 415–441. PubMed
Nien J.K., Mazaki-Tovi S., Romero R., Erez O., Kusanovic J.P., Gotsch F., Pineles B.L., Gomez R., Edwin S., Mazor M., et al. Plasma adiponectin concentrations in non-pregnant, normal and overweight pregnant women. J. Perinat. Med. 2007;35:522–531. doi: 10.1515/JPM.2007.123. PubMed DOI PMC
Straughen J.K., Trudeau S., Misra V.K. Changes in adipose tissue distribution during pregnancy in overweight and obese compared with normal weight women. Nutr. Diabetes. 2013;3:e84. doi: 10.1038/nutd.2013.25. PubMed DOI PMC
Gutaj P., Sibiak R., Wirlstlein P., Wender-Ożegowska E. Determinants of adiponectin levels during pregnancy in women with type 1 diabetes mellitus. Pol. Arch. Intern. Med. 2020;130:252. PubMed
Ranheim T., Haugen F., Staff A.C., Braekke K., Harsem N.K., Drevon C.A. Adiponectin is reduced in gestational diabetes mellitus in normal weight women. Acta Obstet. Gynecol. Scand. 2004;83:341–347. doi: 10.1111/j.0001-6349.2004.00413.x. PubMed DOI
Thyfault J.P., Hedberg E.M., Anchan R.M., Thorne O.P., Isler C.M., Newton E.R., Dohm G.L., DeVente J.E. Gestational diabetes is associated with depressed adiponectin levels. J. Soc. Gynecol. Investig. 2005;12:41–55. doi: 10.1016/j.jsgi.2004.07.003. PubMed DOI
Bhograj A., Suryanarayana K., Nayak A., Murthy N., Dharmalingam M., Kalra P. Serum adiponectin levels in gestational diabetes mellitus. Indian J. Endocrinol. Metab. 2016;20:752–755. PubMed PMC
Worda C., Leipold H., Gruber C., Kautzky-Willer A., Knöfler M., Bancher-Todesca D. Decreased plasma adiponectin concentrations in women with gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2004;191:2120–2124. doi: 10.1016/j.ajog.2004.04.038. PubMed DOI
Weerakiet S., Lertnarkorn K., Panburana P., Pitakitronakorn S., Vesathada K., Wansumrith S. Can adiponectin predict gestational diabetes? Gynecol. Endocrinol. 2006;22:362–368. doi: 10.1080/09513590600818919. PubMed DOI
Williams M.A., Qiu C., Muy-Rivera M., Vadachkoria S., Song T., Luthy D.A. Plasma Adiponectin Concentrations in Early Pregnancy and Subsequent Risk of Gestational Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2004;89:2306–2311. doi: 10.1210/jc.2003-031201. PubMed DOI
Savvidou M., Nelson S.M., Makgoba M., Messow C.M., Sattar N., Nicolaides K. First-trimester prediction of gestational diabetes mellitus: Examining the potential of combining maternal characteristics and laboratory measures. Diabetes. 2010;59:3017–3022. doi: 10.2337/db10-0688. PubMed DOI PMC
Georgiou H.M., Lappas M., Georgiou G.M., Marita A., Bryant V.J., Hiscock R., Permezel M., Khalil Z., Rice G.E. Screening for biomarkers predictive of gestational diabetes mellitus. Acta Diabetol. 2008;45:157–165. doi: 10.1007/s00592-008-0037-8. PubMed DOI
Lain K.Y., Daftary A.R., Ness R.B., Roberts J.M. First trimester adipocytokine concentrations and risk of developing gestational diabetes later in pregnancy. Clin. Endocrinol. Oxf. 2008;69:407–411. doi: 10.1111/j.1365-2265.2008.03198.x. PubMed DOI
Iliodromiti S., Sassarini J., Kelsey T.W., Lindsay R.S., Sattar N., Nelson S.M. Accuracy of circulating adiponectin for predicting gestational diabetes: A systematic review and meta-analysis. Diabetologia. 2016;59:692–699. doi: 10.1007/s00125-015-3855-6. PubMed DOI PMC
Chen J., Tan B., Karteris E., Zervou S., Digby J., Hillhouse E.W., Vatish M., Randeva H.S. Secretion of adiponectin by human placenta: Differential modulation of adiponectin and its receptors by cytokines. Diabetologia. 2006;49:1292–1302. doi: 10.1007/s00125-006-0194-7. PubMed DOI
Cortelazzi D., Corbetta S., Ronzoni S., Pelle F., Marconi A., Cozzi V., Cetin I., Cortelazzi R., Beck-Peccoz P., Spada A. Maternal and foetal resistin and adiponectin concentrations in normal and complicated pregnancies. Clin. Endocrinol. Oxf. 2007;66:447–453. doi: 10.1111/j.1365-2265.2007.02761.x. PubMed DOI
Adu-Gyamfi E.A., Fondjo L.A., Owiredu W.K.B.A., Czika A., Nelson W., Lamptey J., Wang Y., Ding Y. The role of adiponectin in placentation and preeclampsia. Cell Biochem. Funct. 2020;38:106–117. doi: 10.1002/cbf.3458. PubMed DOI
Weiwei T., Haiyan Y., Juan C., Xiaodong W., Weibo C., Rong Z. Expressions of adiponectin receptors in placenta and their correlation with preeclampsia. Reprod. Sci. 2009;16:676–684. doi: 10.1177/1933719109334258. PubMed DOI
Dong G., Tian Y., Li X. Adiponectin Participates in Preeclampsia by Regulating the Biological Function of Placental Trophoblasts through P38 MAPK-STAT5 Pathway. Iran. J. Public Health. 2018;47:1838–1844. PubMed PMC
Ramsay J.E., Jamieson N., Greer I.A., Sattar N. Paradoxical Elevation in Adiponectin Concentrations in Women with Preeclampsia. Hypertension. 2003;42:891–894. doi: 10.1161/01.HYP.0000095981.92542.F6. PubMed DOI
Naruse K., Yamasaki M., Umekage H., Sado T., Sakamoto Y., Morikawa H. Peripheral blood concentrations of adiponectin, an adipocyte-specific plasma protein, in normal pregnancy and preeclampsia. J. Reprod. Immunol. 2005;65:65–75. doi: 10.1016/j.jri.2004.09.004. PubMed DOI
Lu D., Yang X., Wu Y., Wang H., Huang H., Dong M. Serum adiponectin, leptin and soluble leptin receptor in pre-eclampsia. Int. J. Gynecol. Obstet. 2006;95:121–126. doi: 10.1016/j.ijgo.2006.06.015. PubMed DOI
Takemura Y., Osuga Y., Koga K., Tajima T., Hirota Y., Hirata T., Morimoto C., Harada M., Yano T., Taketani Y. Selective increase in high molecular weight adiponectin concentration in serum of women with preeclampsia. J. Reprod. Immunol. 2007;73:60–65. doi: 10.1016/j.jri.2006.05.004. PubMed DOI
Nien J.K., Mazaki-Tovi S., Romero R., Erez O., Kusanovic J.P., Gotsch F., Pineles B.L., Gomez R., Edwin S., Mazor M., et al. Adiponectin in severe preeclampsia. J. Perinat. Med. 2007;35:503–512. doi: 10.1515/JPM.2007.121. PubMed DOI PMC
Ouyang Y., Chen H., Chen H. Reduced plasma adiponectin and elevated leptin in pre-eclampsia. Int. J. Gynecol. Obstet. 2007;98:110–114. doi: 10.1016/j.ijgo.2007.04.021. PubMed DOI
Mazaki-Tovi S., Romero R., Vaisbuch E., Kusanovic J.P., Erez O., Gotsch F., Chaiworapongsa T., Than N.G., Kim S.K., Nhan-Chang C.L., et al. Maternal serum adiponectin multimers in preeclampsia. J. Perinat. Med. 2009;37:349–363. doi: 10.1515/JPM.2009.085. PubMed DOI PMC
Herse F., Youpeng B., Staff A.C., Yong-Meid J., Dechend R., Rong Z. Circulating and uteroplacental adipocytokine concentrations in preeclampsia. Reprod. Sci. 2009;16:584–590. doi: 10.1177/1933719109332828. PubMed DOI
Hendler I., Blackwell S.C., Mehta S.H., Whitty J.E., Russell E., Sorokin Y., Cotton D.B. The levels of leptin, adiponectin, and resistin in normal weight, overweight, and obese pregnant women with and without preeclampsia. Am. J. Obstet. Gynecol. 2005;193:979–983. doi: 10.1016/j.ajog.2005.06.041. PubMed DOI
Bawah A.T., Yeboah F.A., Nanga S., Alidu H., Ngala R.A. Serum adipocytokines and adiposity as predictive indices of preeclampsia. Clin. Hypertens. 2020;26:19. doi: 10.1186/s40885-020-00152-0. PubMed DOI PMC
Sethi J.K., Vidal-Puig A. Visfatin: The missing link between intra-abdominal obesity and diabetes? Trends Mol. Med. 2005;11:344–347. doi: 10.1016/j.molmed.2005.06.010. PubMed DOI PMC
Morgan S.A., Bringolf J.B., Seidel E.R. Visfatin expression is elevated in normal human pregnancy. Peptides. 2008;29:1382–1389. doi: 10.1016/j.peptides.2008.04.010. PubMed DOI
Mazaki-Tovi S., Romero R., Kusanovic J.P., Vaisbuch E., Erez O., Than N.G., Chaiworapongsa T., Nhan-Chang C.L., Pacora P., Gotsch F., et al. Maternal visfatin concentration in normal pregnancy. J. Perinat. Med. 2009;37:206–217. doi: 10.1515/JPM.2009.054. PubMed DOI PMC
Iciek R., Brazert M., Wender-Ozegowska E., Pietryga M., Brazert J. Low placental visfatin expression is related to impaired glycaemic control and fetal macrosomia in pregnancies complicated by type 1 diabetes. J. Physiol. Pharmacol. 2018;69:61–66. PubMed
Wnuk A., Stangret A., Wątroba M., Płatek A.E., Skoda M., Cendrowski K., Sawicki W., Szukiewicz D. Can adipokine visfatin be a novel marker of pregnancy-related disorders in women with obesity? Obes. Rev. 2020;21:e13022. doi: 10.1111/obr.13022. PubMed DOI
Radzicka S., Pietryga M., Iciek R., Brazert J. The role of visfatin in the pathogenesis of gestational diabetes (GDM) Ginekol. Pol. 2018;89:518–521. doi: 10.5603/GP.a2018.0088. PubMed DOI
Akturk M., Altinova A.E., Mert I., Buyukkagnici U., Sargin A., Arslan M., Danisman N. Visfatin concentration is decreased in women with gestational diabetes mellitus in the third trimester. J. Endocrinol. Investig. 2008;31:610–613. doi: 10.1007/BF03345611. PubMed DOI
Ferreira A.F.A., Rezende J.C., Vaikousi E., Akolekar R., Nicolaides K.H. Maternal Serum Visfatin at 11–13 Weeks of Gestation in Gestational Diabetes Mellitus. Clin. Chem. 2011;57:609–613. doi: 10.1373/clinchem.2010.159806. PubMed DOI
Lewandowski K.C., Stojanovic N., Press M., Tuck S.M., Szosland K., Bienkiewicz M., Vatish M., Lewinski A., Prelevic G.M., Randeva H.S. Elevated serum levels of visfatin in gestational diabetes: A comparative study across various degrees of glucose tolerance. Diabetologia. 2007;50:1033–1037. doi: 10.1007/s00125-007-0610-7. PubMed DOI
Brink H.S., van der Lely A.J., van der Linden J. The potential role of biomarkers in predicting gestational diabetes. Endocr. Connect. 2016;5:R26–R34. doi: 10.1530/EC-16-0033. PubMed DOI PMC
Zhang W., Zhao D., Meng Z., Wang H., Zhao K., Feng X., Li Y., Dun A., Jin X., Hou H. Association between circulating visfatin and gestational diabetes mellitus: A systematic review and meta-analysis. Acta Diabetol. 2018;55:1113–1120. doi: 10.1007/s00592-018-1188-x. PubMed DOI
Mazaki-Tovi S., Romero R., Kusanovic J.P., Vaisbuch E., Erez O., Than N.G., Chaiworapongsa T., Nhan-Chang C.L., Pacora P., Gotsch F., et al. Visfatin in human pregnancy: Maternal gestational diabetes vis-à-vis neonatal birthweight. J. Perinat. Med. 2009;37:218–231. doi: 10.1515/JPM.2009.053. PubMed DOI PMC
Cekmez F., Pirgon O., Tanju A., Ipcioglu O.M. Cord plasma concentrations of visfatin, adiponectin and insulin in healthy term neonates: Positive correlation with birthweight. Int. J. Biomed. Sci. 2009;5:257–260. PubMed PMC
Taraqi A.S.M., Tehranian N., Aghoozi M.F., Yousefi S., Kazemnejad A., Roudbaneh S.P., Esmaeilzadeh M.S. Visfatin as a predictor for growth of fetus and infant. Turk. J. Obstet. Gynecol. 2018;15:80–86. doi: 10.4274/tjod.48091. PubMed DOI PMC
Garg M., Thamotharan M., Dai Y., Lagishetty V., Matveyenko A.V., Lee W.N.P., Devaskar S.U. Glucose intolerance and lipid metabolic adaptations in response to intrauterine and postnatal calorie restriction in male adult rats. Endocrinology. 2013;154:102–113. doi: 10.1210/en.2012-1640. PubMed DOI PMC
Dessì A., Pravettoni C., Cesare Marincola F., Schirru A., Fanos V. The biomarkers of fetal growth in intrauterine growth retardation and large for gestational age cases: From adipocytokines to a metabolomic all-in-one tool. Expert Rev. Proteom. 2015;12:309–316. doi: 10.1586/14789450.2015.1034694. PubMed DOI
Fasshauer M., Waldeyer T., Seeger J., Schrey S., Ebert T., Kratzsch J., Lossner U., Bluher M., Stumvoll M., Faber R., et al. Serum levels of the adipokine visfatin are increased in pre-eclampsia. Clin. Endocrinol. Oxf. 2008;69:69–73. doi: 10.1111/j.1365-2265.2007.03147.x. PubMed DOI
Hu W., Wang Z., Wang H., Huang H., Dong M. Serum visfatin levels in late pregnancy and pre-eclampsia. Acta Obstet. Gynecol. Scand. 2008;87:413–418. doi: 10.1080/00016340801976012. PubMed DOI
Zulfikaroglu E., Isman F., PayaslI A., KIlIc S., Kucur M., DanIsman N. Plasma visfatin levels in preeclamptic and normal pregnancies. Arch. Gynecol. Obstet. 2010;281:995–998. doi: 10.1007/s00404-009-1192-z. PubMed DOI
Kim S.-C., Park M.J., Joo B.-S., Joo J.-K., Suh D.-S., Lee K.-S. Decreased expressions of vascular endothelial growth factor and visfatin in the placental bed of pregnancies complicated by preeclampsia. J. Obstet. Gynaecol. Res. 2012;38:665–673. doi: 10.1111/j.1447-0756.2011.01773.x. PubMed DOI
Zorba E., Vavilis D., Venetis C.A., Zournatzi V., Kellartzis D., Tarlatzis B.C. Visfatin serum levels are increased in women with preeclampsia: A case-control study. J. Matern. Neonatal Med. 2012;25:1668–1673. doi: 10.3109/14767058.2012.657275. PubMed DOI
Chen D., Dong M., Fang Q., He J., Wang Z., Yang X. Alterations of serum resistin in normal pregnancy and pre-eclampsia. Clin. Sci. 2005;108:81–84. doi: 10.1042/CS20040225. PubMed DOI
Yura S., Sagawa N., Itoh H., Kakui K., Nuamah M.A., Korita D., Takemura M., Fujii S. Resistin is expressed in the human placenta. J. Clin. Endocrinol. Metab. 2003;88:1394–1397. doi: 10.1210/jc.2002-011926. PubMed DOI
Schwartz D.R., Lazar M.A. Human resistin: Found in translation from mouse to man. Trends Endocrinol. Metab. 2011;22:259–265. doi: 10.1016/j.tem.2011.03.005. PubMed DOI PMC
Di Simone N., Di Nicuolo F., Marzioni D., Castellucci M., Sanguinetti M., D’Lppolito S., Caruso A. Resistin modulates glucose uptake and glucose transporter-1 (GLUT-1) expression in trophoblast cells. J. Cell. Mol. Med. 2009;13:388–397. doi: 10.1111/j.1582-4934.2008.00337.x. PubMed DOI PMC
Estienne A., Bongrani A., Reverchon M., Ramé C., Ducluzeau P.H., Froment P., Dupont J. Involvement of novel adipokines, chemerin, visfatin, resistin and apelin in reproductive functions in normal and pathological conditions in humans and animal models. Int. J. Mol. Sci. 2019;20:4431. doi: 10.3390/ijms20184431. PubMed DOI PMC
Hivert M.F., Manning A.K., McAteer J.B., Dupuis J., Fox C.S., Cupples L.A., Meigs J.B., Florez J.C. Association of variants in RETN with plasma resistin levels and diabetes-related traits in the framingham offspring study. Diabetes. 2009;58:750–756. doi: 10.2337/db08-1339. PubMed DOI PMC
Lobo T.F., Torloni M.R., Gueuvoghlanian-Silva B.Y., Mattar R., Daher S. Resistin concentration and gestational diabetes: A systematic review of the literature. J. Reprod. Immunol. 2013;97:120–127. doi: 10.1016/j.jri.2012.10.004. PubMed DOI
Nanda S., Poon L.C.Y., Muhaisen M., Acosta I.C., Nicolaides K.H. Maternal serum resistin at 11 to 13 weeks’ gestation in normal and pathological pregnancies. Metabolism. 2012;61:699–705. doi: 10.1016/j.metabol.2011.10.006. PubMed DOI
Chen D., Fang Q., Chai Y., Wang H., Huang H., Dong M. Serum resistin in gestational diabetes mellitus and early postpartum. Clin. Endocrinol. Oxf. 2007;67:208–211. doi: 10.1111/j.1365-2265.2007.02862.x. PubMed DOI
Nien J.K., Mazaki-Tovi S., Romero R., Kusanovic J.P., Erez O., Gotsch F., Pineles B.L., Friel L.A., Espinoza J., Goncalves L., et al. Resistin: A hormone which induces insulin resistance is increased in normal pregnancy. J. Perinat. Med. 2007;35:513–521. doi: 10.1515/JPM.2007.122. PubMed DOI PMC
Lappas M., Yee K., Permezel M., Rice G.E. Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes, and maternal adipose tissue and skeletal muscle from normal and gestational diabetes mellitus-complicated pregnancies. J. Endocrinol. 2005;186:457–465. doi: 10.1677/joe.1.06227. PubMed DOI
Kuzmicki M., Telejko B., Szamatowicz J., Zonenberg A., Nikolajuk A., Kretowski A., Gorska M. High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecol. Endocrinol. 2009;25:258–263. doi: 10.1080/09513590802653825. PubMed DOI
Megia A., Vendrell J., Gutierrez C., Sabaté M., Broch M., Fernández-Real J.M., Simón I. Insulin sensitivity and resistin levels in gestational diabetes mellitus and after parturition. Eur. J. Endocrinol. 2008;158:173–178. doi: 10.1530/EJE-07-0671. PubMed DOI
Christiansen M., Hedley P.L., Placing S., Wøjdemann K.R., Carlsen A.L., Jørgensen J.M., Gjerris A.C., Shalmi A.C., Rode L., Sundberg K., et al. Maternal serum resistin is reduced in first trimester preeclampsia pregnancies and is a marker of clinical severity. Hypertens. Pregnancy. 2015;34:422–433. doi: 10.3109/10641955.2014.913615. PubMed DOI
Haugen F., Ranheim T., Harsem N.K., Lips E., Staff A.C., Drevon C.A. Increased plasma levels of adipokines in preeclampsia: Relationship to placenta and adipose tissue gene expression. Am. J. Physiol. Endocrinol. Metab. 2006;290:E326–E333. doi: 10.1152/ajpendo.00020.2005. PubMed DOI
Seol H.J., Oh M.J., Yeo M.K., Kim A., Lee E.S., Kim H.J. Comparison of serum levels and the placental expression of resistin between patients with preeclampsia and normal pregnant women. Hypertens. Pregnancy. 2010;29:310–317. doi: 10.3109/10641950902849850. PubMed DOI
Briana D.D., Malamitsi-Puchner A. The role of adipocytokines in fetal growth. Ann. N. Y. Acad. Sci. 2010;1205:82–87. doi: 10.1111/j.1749-6632.2010.05650.x. PubMed DOI
Wang J., Shang L.X., Dong X., Wang X., Wu N., Wang S.H., Zhang F., Xu L.M., Xiao Y. Relationship of adiponectin and resistin levels in umbilical serum, maternal serum and placenta with neonatal birth weight. Aust. N. Z. J. Obstet. Gynaecol. 2010;50:432–438. doi: 10.1111/j.1479-828X.2010.01184.x. PubMed DOI
Kim K.H., Lee K., Moon Y.S., Sul H.S. A Cysteine-rich Adipose Tissue-specific Secretory Factor Inhibits Adipocyte Differentiation. J. Biol. Chem. 2001;276:11252–11256. doi: 10.1074/jbc.C100028200. PubMed DOI
Boström P., Wu J., Jedrychowski M.P., Korde A., Ye L., Lo J.C., Rasbach K.A., Boström E.A., Choi J.H., Long J.Z., et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–468. doi: 10.1038/nature10777. PubMed DOI PMC
Norheim F., Langleite T.M., Hjorth M., Holen T., Kielland A., Stadheim H.K., Gulseth H.L., Birkeland K.I., Jensen J., Drevon C.A. The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J. 2014;281:739–749. doi: 10.1111/febs.12619. PubMed DOI
Kurdiova T., Balaz M., Vician M., Maderova D., Vlcek M., Valkovic L., Srbecky M., Imrich R., Kyselovicova O., Belan V., et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: In vivo and in vitro studies. J. Physiol. 2014;592:1091–1107. doi: 10.1113/jphysiol.2013.264655. PubMed DOI PMC
Huh J.Y., Panagiotou G., Mougios V., Brinkoetter M., Vamvini M.T., Schneider B.E., Mantzoros C.S. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012;61:1725–1738. doi: 10.1016/j.metabol.2012.09.002. PubMed DOI PMC
Garcés M.F., Peralta J.J., Ruiz-Linares C.E., Lozano A.R., Poveda N.E., Torres-Sierra A.L., Eslava-Schmalbach J.H., Alzate J.P., Sánchez Á.Y., Sanchez E., et al. Irisin levels during pregnancy and changes associated with the development of preeclampsia. J. Clin. Endocrinol. Metab. 2014;99:2113–2119. doi: 10.1210/jc.2013-4127. PubMed DOI
Piya M.K., Harte A.L., Sivakumar K., Tripathi G., Voyias P.D., James S., Sabico S., Al-Daghri N.M., Saravanan P., Barber T.M., et al. The identification of irisin in human cerebrospinal fluid: Influence of adiposity, metabolic markers, and gestational diabetes. Am. J. Physiol. Endocrinol. Metab. 2014;306:E512–E518. doi: 10.1152/ajpendo.00308.2013. PubMed DOI
Salem H., Yatchenko Y., Anosov M., Rosenfeld T., Altarescu G., Grisaru-Granovsky S., Birk R. Maternal and neonatal irisin precursor gene FNDC5 polymorphism is associated with preterm birth. Gene. 2018;649:58–62. doi: 10.1016/j.gene.2018.01.097. PubMed DOI
Cui L., Qiao T., Xu F., Li Z., Chen T., Su H., Chen G., Zhang L., Xu D., Zhang X. Circulating irisin levels of prenatal and postnatal patients with gestational diabetes mellitus: A systematic review and meta-analysis. Cytokine. 2020;126:154924. doi: 10.1016/j.cyto.2019.154924. PubMed DOI
Erol O., Erkal N., Ellidağ H.Y., İsenlik B.S., Aydın Ö., Derbent A.U., Yılmaz N. Irisin as an early marker for predicting gestational diabetes mellitus: A prospective study. J. Matern. Neonatal Med. 2016;29:3590–3595. doi: 10.3109/14767058.2016.1142967. PubMed DOI
Kulhan N.G., Kulhan M., Turkler C., Ata N., Kiremitli T., Kiremitli S. Could serum levels of irisin be used in gestational diabetes predicting? Taiwan. J. Obstet. Gynecol. 2019;58:434–437. doi: 10.1016/j.tjog.2019.01.027. PubMed DOI
Park K.H., Zaichenko L., Brinkoetter M., Thakkar B., Sahin-Efe A., Joung K.E., Tsoukas M.A., Geladari E.V., Huh J.Y., Dincer F., et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J. Clin. Endocrinol. Metab. 2013;98:4899–4907. doi: 10.1210/jc.2013-2373. PubMed DOI PMC
Fatima S.S., Khalid E., Ladak A.A., Ali S.A. Colostrum and mature breast milk analysis of serum irisin and sterol regulatory element-binding proteins-1c in gestational diabetes mellitus. J. Matern. Neonatal Med. 2019;32:2993–2999. doi: 10.1080/14767058.2018.1454422. PubMed DOI
Foda A.A., Foda E.A. Effects of delivery on maternal & neonatal irisin levels in normal and preeclamptic pregnant women. Pregnancy Hypertens. 2017;10:226–229. PubMed
Wang Y., Gu Y., Zhang Y., Lewis D.F. Evidence of endothelial dysfunction in preeclampsia: Decreased endothelial nitric oxide synthase expression is associated with increased cell permeability in endothelial cells from preeclampsia. Am. J. Obstet. Gynecol. 2004;190:817–824. doi: 10.1016/j.ajog.2003.09.049. PubMed DOI
Xiang L., Xiang G., Yue L., Zhang J., Zhao L. Circulating irisin levels are positively associated with endothelium-dependent vasodilation in newly diagnosed type 2 diabetic patients without clinical angiopathy. Atherosclerosis. 2014;235:328–333. doi: 10.1016/j.atherosclerosis.2014.04.036. PubMed DOI
Lee P., Linderman J.D., Smith S., Brychta R.J., Wang J., Idelson C., Perron R.M., Werner C.D., Phan G.Q., Kammula U.S., et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19:302–309. doi: 10.1016/j.cmet.2013.12.017. PubMed DOI PMC
Çaǧlar M., Göksu M., Isenlik B.S., Yavuzcan A., Yilmaz M., Üstün Y., Aydin S., Kumru S. Irisin in idiopathic foetal growth restriction. J. Endocrinol. Investig. 2014;37:619–624. doi: 10.1007/s40618-014-0078-5. PubMed DOI
Ergaz Z., Avgil M., Ornoy A. Intrauterine growth restriction—Etiology and consequences: What do we know about the human situation and experimental animal models? Reprod. Toxicol. 2005;20:301–322. doi: 10.1016/j.reprotox.2005.04.007. PubMed DOI
Pavlova T., Zlamal F., Tomandl J., Hodicka Z., Gulati S., Bienertova-Vasku J. Irisin maternal plasma and cord blood levels in mothers with spontaneous preterm and term delivery. Dis. Markers. 2018;2018 doi: 10.1155/2018/7628957. PubMed DOI PMC
Hernandez-Trejo M., Garcia-Rivas G., Torres-Quintanilla A., Laresgoiti-Servitje E. Relationship between irisin concentration and serum cytokines in mother and newborn. PLoS ONE. 2016;11:e0165229. doi: 10.1371/journal.pone.0165229. PubMed DOI PMC
Komiya T., Tanigawa Y., Hirohashi S. Cloning of the novel gene intelectin, which is expressed in intestinal paneth cells in mice. Biochem. Biophys. Res. Commun. 1998;251:759–762. doi: 10.1006/bbrc.1998.9513. PubMed DOI
Yang R.Z., Lee M.J., Hu H., Pray J., Wu H.B., Hansen B.C., Shuldiner A.R., Fried S.K., McLenithan J.C., Gong D.W. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: Possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 2006;290:E1253–E1261. doi: 10.1152/ajpendo.00572.2004. PubMed DOI
Tan B.K., Adya R., Farhatullah S., Lewandowski K.C., O’Hare P., Lehnert H., Randeva H.S. Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome ex vivo in vivo regulation of omentin-1 by insulin and glucose. Diabetes. 2008;57:801–808. doi: 10.2337/db07-0990. PubMed DOI
Tan B.K., Adya R., Randeva H.S. Omentin: A Novel Link Between Inflammation, Diabesity, and Cardiovascular Disease. Trends Cardiovasc. Med. 2010;20:143–148. doi: 10.1016/j.tcm.2010.12.002. PubMed DOI
Briana D.D., Boutsikou M., Baka S., Gourgiotis D., Marmarinos A., Liosi S., Hassiakos D., Malamitsi-Puchner A. Omentin-1 and vaspin are present in the fetus and neonate, and perinatal concentrations are similar in normal and growth-restricted pregnancies. Metabolism. 2011;60:486–490. doi: 10.1016/j.metabol.2010.04.014. PubMed DOI
Barker G., Lim R., Georgiou H.M., Lappas M. Omentin-1 Is Decreased in Maternal Plasma, Placenta and Adipose Tissue of Women with Pre-Existing Obesity. PLoS ONE. 2012;7:e42943. doi: 10.1371/journal.pone.0042943. PubMed DOI PMC
Lewandowski K., Nadel I., Lewinski A., Bienkiewicz M., Tan B., Randeva H.S., Cypryk K. Positive correlation between serum omentin and thrombospondin-1 in gestational diabetes despite lack of correlation with insulin resistance indices. Ginekol. Pol. 2010;81:907–912. PubMed
Franz M., Polterauer M., Springer S., Kuessel L., Haslinger P., Worda C., Worda K. Maternal and neonatal omentin-1 levels in gestational diabetes. Arch. Gynecol. Obstet. 2018;297:885–889. doi: 10.1007/s00404-018-4652-5. PubMed DOI PMC
De Souza Batista C.M., Yang R.Z., Lee M.J., Glynn N.M., Yu D.Z., Pray J., Ndubuizu K., Patil S., Schwartz A., Kligman M., et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56:1655–1661. doi: 10.2337/db06-1506. PubMed DOI
Silverman B.L., Rizzo T., Green O.C., Cho N.H., Winter R.J., Ogata E.S., Richards G.E., Metzger B.E. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes. 1991;40:121–125. doi: 10.2337/diab.40.2.S121. PubMed DOI
Fetita L.S., Sobngwi E., Serradas P., Calvo F., Gautier J.F. Review: Consequences of fetal exposure to maternal diabetes in offspring. J. Clin. Endocrinol. Metab. 2006;91:3718–3724. doi: 10.1210/jc.2006-0624. PubMed DOI
Philipps L.H., Santhakumaran S., Gale C., Prior E., Logan K.M., Hyde M.J., Modi N. The diabetic pregnancy and offspring BMI in childhood: A systematic review and meta-analysis. Diabetologia. 2011;54:1957–1966. doi: 10.1007/s00125-011-2180-y. PubMed DOI
Catli G., Anik A., Abaci A., Kume T., Bober E. Low omentin-1 levels are related with clinical and metabolic parameters in obese children. Exp. Clin. Endocrinol. Diabetes. 2013;121:595–600. doi: 10.1055/s-0033-1355338. PubMed DOI
Pan X., Kaminga A.C., Wen S.W., Acheampong K., Liu A. Omentin-1 in diabetes mellitus: A systematic review and meta-analysis. PLoS ONE. 2019;14:e0226292. doi: 10.1371/journal.pone.0226292. PubMed DOI PMC
Sun J., Ren J., Zuo C., Deng D., Pan F., Chen R., Zhu J., Chen C., Ye S. Circulating apelin, chemerin and omentin levels in patients with gestational diabetes mellitus: A systematic review and meta-Analysis. Lipids Health Dis. 2020;19 doi: 10.1186/s12944-020-01209-7. PubMed DOI PMC
Šplíchal Z., Zlámal F., Máchal J., Lipková J., Pavlová T., Hodická Z., Ventruba P., Vašků A., Bienertová-Vašků J. Comparison of maternal omentin-1 levels and genetic variability between spontaneous term and preterm births. J. Matern. Neonatal Med. 2018;31:1689–1695. doi: 10.1080/14767058.2017.1323530. PubMed DOI
Helfer G., Wu Q.F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 2018;238:R79–R94. doi: 10.1530/JOE-18-0174. PubMed DOI PMC
Kaur J., Mattu H.S., Chatha K., Randeva H.S. Chemerin in human cardiovascular disease. Vascul. Pharmacol. 2018;110 doi: 10.1016/j.vph.2018.06.018. PubMed DOI
Kasher-Merona M., Mazaki-Tovia S., Barhod E., Hemi R., Haas J., Gat I., Zilberberg E., Yinon Y., Karasik A., Kanety H. Chemerin concentrations in maternal and fetal compartments: Implications for metabolic adaptations to normal human pregnancy. J. Perinat. Med. 2014;42 doi: 10.1515/jpm-2013-0166. PubMed DOI
Liang Z., Zhou M., Xu X.K., Qu F., Chen D. Is Chemerin associated with gestational diabetes mellitus? An evidence-based clinical research from Chinese women. J. Obstet. Gynaecol. Lahore. 2018;38:482–487. doi: 10.1080/01443615.2017.1385596. PubMed DOI
Stojek M. The role of chemerin in human disease. Postepy Hig. Med. Dosw. 2017;71:110–117. doi: 10.5604/01.3001.0010.3795. PubMed DOI
Buechler C., Feder S., Haberl E.M., Aslanidis C. Chemerin isoforms and activity in obesity. Int. J. Mol. Sci. 2019;20:1128. doi: 10.3390/ijms20051128. PubMed DOI PMC
Garces M.F., Sanchez E., Ruíz-Parra A.I., Rubio-Romero J.A., Angel-Müller E., Suarez M.A., Bohórquez L.F., Bravo S.B., Nogueiras R., Diéguez C., et al. Serum chemerin levels during normal human pregnancy. Peptides. 2013;42:138–143. doi: 10.1016/j.peptides.2013.01.003. PubMed DOI
Ebert T., Gebhardt C., Scholz M., Schleinitz D., Blüher M., Stumvoll M., Kovacs P., Fasshauer M., Tönjes A. Adipocytokines are not associated with gestational diabetes mellitus but with pregnancy status. Cytokine. 2020;131:155088. doi: 10.1016/j.cyto.2020.155088. PubMed DOI
Francis E.C., Li M., Hinkle S.N., Cao Y., Chen J., Wu J., Zhu Y., Cao H., Kemper K., Rennert L., et al. Adipokines in early and mid-pregnancy and subsequent risk of gestational diabetes: A longitudinal study in a multiracial cohort. BMJ Open Diabetes Res. Care. 2020;8:e001333. doi: 10.1136/bmjdrc-2020-001333. PubMed DOI PMC
Okten S.B., Bildacı T.B. Salivary Leptin and Chemerin; a novel way of gestational diabetes screening. Gynecol. Endocrinol. 2020;36:1116–1118. doi: 10.1080/09513590.2020.1749999. PubMed DOI
Tsiotra P.C., Halvatsiotis P., Patsouras K., Maratou E., Salamalekis G., Raptis S.A., Dimitriadis G., Boutati E. Circulating adipokines and mRNA expression in adipose tissue and the placenta in women with gestational diabetes mellitus. Peptides. 2018;101:157–166. doi: 10.1016/j.peptides.2018.01.005. PubMed DOI
Pfau D., Stepan H., Kratzsch J., Verlohren M., Verlohren H.J., Drynda K., Lössner U., Blüher M., Stumvoll M., Fasshauer M. Circulating levels of the adipokine chemerin in gestational diabetes mellitus. Horm. Res. Paediatr. 2010;74:56–61. doi: 10.1159/000282114. PubMed DOI
Cetin O., Kurdoglu Z., Kurdoglu M., Sahin H.G. Chemerin level in pregnancies complicated by preeclampsia and its relation with disease severity and neonatal outcomes. J. Obstet. Gynaecol. Lahore. 2017;37 doi: 10.1080/01443615.2016.1233947. PubMed DOI
Wang X., Liu J., Wang D., Zhu H., Kang L., Jiang J. Expression and correlation of Chemerin and FABP4 in peripheral blood of gestational diabetes mellitus patients. Exp. Ther. Med. 2019;19:710–716. doi: 10.3892/etm.2019.8247. PubMed DOI PMC
Zhang J., Chi H., Xiao H., Tian X., Wang Y., Yun X., Xu Y. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) single nucleotide polymorphisms (SNPs), inflammation and metabolism in gestational diabetes mellitus in inner mongolia. Med. Sci. Monit. 2017;23:4149–4157. doi: 10.12659/MSM.903565. PubMed DOI PMC
Fatima S.S., Alam F., Chaudhry B., Khan T.A. Elevated levels of chemerin, leptin, and interleukin-18 in gestational diabetes mellitus. J. Matern. Neonatal Med. 2017;30 doi: 10.1080/14767058.2016.1199671. PubMed DOI
Li X.M., Ji H., Li C.J., Wang P.H., Yu P., Yu D.M. Chemerin expression in Chinese pregnant women with and without gestational diabetes mellitus. Ann. Endocrinol. Paris. 2015;76:19–24. doi: 10.1016/j.ando.2014.10.001. PubMed DOI
Van Poppel M.N.M., Zeck W., Ulrich D., Schest E.C., Hirschmugl B., Lang U., Wadsack C., Desoye G. Cord blood chemerin: Differential effects of gestational diabetes mellitus and maternal obesity. Clin. Endocrinol. Oxf. 2014;80:65–72. doi: 10.1111/cen.12140. PubMed DOI
Barker G., Lim R., Rice G.E., Lappas M. Increased chemerin concentrations in fetuses of obese mothers and correlation with maternal insulin sensitivity. J. Matern. Neonatal Med. 2012;25:2274–2280. doi: 10.3109/14767058.2012.686540. PubMed DOI
Ueland T., Michelsen A.E., Aukrust P., Henriksen T., Bollerslev J., Lekva T. Adipokines and macrophage markers during pregnancy—Possible role for sCD163 in prediction and progression of gestational diabetes mellitus. Diabetes. Metab. Res. Rev. 2019;35 doi: 10.1002/dmrr.3114. PubMed DOI
Guelfi K.J., Ong M.J., Li S., Wallman K.E., Doherty D.A., Fournier P.A., Newnham J.P., Keelan J.A. Maternal circulating adipokine profile and insulin resistance in women at high risk of developing gestational diabetes mellitus. Metabolism. 2017;75:54–60. doi: 10.1016/j.metabol.2017.08.003. PubMed DOI
Görkem Ü., Küçükler F.K., Toğrul C., Güngör T. Are adipokines associated with gestational diabetes mellitus? J. Turk. Ger. Gynecol. Assoc. 2016;17:186–190. doi: 10.5152/jtgga.2016.16112. PubMed DOI PMC
Hare K.J., Bonde L., Svare J.A., Randeva H.S., Asmar M., Larsen S., Vilsbøll T., Knop F.K. Decreased plasma chemerin levels in women with gestational diabetes mellitus. Diabet. Med. 2014;31:936–940. doi: 10.1111/dme.12436. PubMed DOI
Mehmood S., Ye C., Connelly P.W., Hanley A.J., Zinman B., Retnakaran R. Rising plasminogen activator inhibitor-1 and hypoadiponectinemia characterize the cardiometabolic biomarker profile of women with recent gestational diabetes. Cardiovasc. Diabetol. 2018;17:133. doi: 10.1186/s12933-018-0776-y. PubMed DOI PMC
Yang X., Quan X., Lan Y., Ye J., Wei Q., Yin X., Fan F., Xing H. Serum chemerin level during the first trimester of pregnancy and the risk of gestational diabetes mellitus. Gynecol. Endocrinol. 2017;33:770–773. doi: 10.1080/09513590.2017.1320382. PubMed DOI
Hasanvand Z., Sadeghi A., Rezvanfar M.R., Goodarzi M.T., Rahmannezhad G., Mashayekhi F.J. Association between chemerin rs17173608 and rs4721 gene polymorphisms and gestational diabetes mellitus in Iranian pregnant women. Gene. 2018;649:87–92. doi: 10.1016/j.gene.2018.01.061. PubMed DOI
Aviram A., Shtaif B., Gat-Yablonski G., Yogev Y. The association between adipocytokines and glycemic control in women with gestational diabetes mellitus. J. Matern. Neonatal Med. 2020;33:177–183. doi: 10.1080/14767058.2018.1487944. PubMed DOI
Ustebay S., Baykus Y., Deniz R., Ugur K., Yavuzkir S., Yardim M., Kalayci M., Çaglar M., Aydin S. Chemerin and Dermcidin in Human Milk and Their Alteration in Gestational Diabetes. J. Hum. Lact. 2019;35:550–558. doi: 10.1177/0890334419837523. PubMed DOI
Xu Q.L., Zhu M., Jin Y., Wang N., Xu H.X., Quan L.M., Wang S.S., Li S.S. The predictive value of the first-trimester maternal serum chemerin level for pre-eclampsia. Peptides. 2014;62:150–154. doi: 10.1016/j.peptides.2014.10.002. PubMed DOI
Stepan H., Philipp A., Roth I., Kralisch S., Jank A., Schaarschmidt W., Lössner U., Kratzsch J., Blüher M., Stumvoll M., et al. Serum levels of the adipokine chemerin are increased in preeclampsia during and 6 months after pregnancy. Regul. Pept. 2011;168:69–72. doi: 10.1016/j.regpep.2011.03.005. PubMed DOI
Duan D.M., Niu J.M., Lei Q., Lin X.H., Chen X. Serum levels of the adipokine chemerin in preeclampsia. J. Perinat. Med. 2012;40:121–127. doi: 10.1515/jpm.2011.127. PubMed DOI
Wang L., Yang T., Ding Y., Zhong Y., Yu L., Peng M. Chemerin plays a protective role by regulating human umbilical vein endothelial cell-induced nitric oxide signaling in preeclampsia. Endocrine. 2014;48:299–308. doi: 10.1007/s12020-014-0286-y. PubMed DOI
Turgut A., Ozler A., Goruk N.Y., Tunç S.Y., Sak M.E., Evsen M.S., Evliyaoglu O., Gul T. Serum levels of the adipokines, free fatty acids, and oxidative stress markers in obese and non-obese preeclamptic patients. Clin. Exp. Obstet. Gynecol. 2015;42:473–479. PubMed
Mazaki-Tovi S., Kasher-Meron M., Hemi R., Haas J., Gat I., Lantsberg D., Hendler I., Kanety H. Chemerin is present in human cord blood and is positively correlated with birthweight. Am. J. Obstet. Gynecol. 2012;207:412.e1–412.e10. doi: 10.1016/j.ajog.2012.08.008. PubMed DOI
Boutsikou T., Briana D.D., Boutsikou M., Kafalidis G., Stamati L., Baka S., Hassiakos D., Gourgiotis D., Malamitsi-Puchner A. Cord blood chemerin and obestatin levels in large for gestational age infants. J. Matern. Neonatal Med. 2013;26:123–126. doi: 10.3109/14767058.2012.728648. PubMed DOI
Léniz A., Portillo M.P., Fernández-Quintela A., Macarulla M.T., Sarasua-Miranda A., del Hoyo M., Díez-López I. Has the adipokine profile an influence on the catch-up growth type in small for gestational age infants? J. Physiol. Biochem. 2019;75:311–319. doi: 10.1007/s13105-019-00684-6. PubMed DOI
Yang X., Yao J., Wei Q., Ye J., Yin X., Quan X., Lan Y., Xing H. Role of chemerin/CMKLR1 in the maintenance of early pregnancy. Front. Med. 2018;12:525–532. doi: 10.1007/s11684-017-0577-9. PubMed DOI
Yang X., Quan X., Lan Y., Wei Q., Ye J., Yin X., Ji Z., Xing H., Yang Y. Serum chemerin level in women with PCOS and its relation with the risk of spontaneous abortion. Gynecol. Endocrinol. 2018;34:864–867. doi: 10.1080/09513590.2018.1462316. PubMed DOI
Reynolds L.J., Chavan N.R., DeHoff L.B., Preston J.D., Maddox H.F., O’Brien J.M., Armstrong D.A., Marsit C.J., Pearson K.J. Smoking during pregnancy increases chemerin expression in neonatal tissue. Exp. Physiol. 2019;104:93–99. doi: 10.1113/EP087307. PubMed DOI PMC
Antushevich H., Wójcik M. Review: Apelin in disease. Clin. Chim. Acta. 2018;483:241–248. doi: 10.1016/j.cca.2018.05.012. PubMed DOI
Hu H., He L., Li L., Chen L. Apelin/APJ system as a therapeutic target in diabetes and its complications. Mol. Genet. Metab. 2016;119:20–27. doi: 10.1016/j.ymgme.2016.07.012. PubMed DOI
Zhong J.C., Zhang Z.Z., Wang W., McKinnie S.M.K., Vederas J.C., Oudit G.Y. Targeting the apelin pathway as a novel therapeutic approach for cardiovascular diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863:1942–1950. doi: 10.1016/j.bbadis.2016.11.007. PubMed DOI
Kourtis A., Gkiomisi A., Mouzaki M., Makedou K., Anastasilakis A.D., Toulis K.A., Gerou S., Gavana E., Agorastos T. Apelin levels in normal pregnancy. Clin. Endocrinol. Oxf. 2011;75:367–371. doi: 10.1111/j.1365-2265.2011.04061.x. PubMed DOI
Guo Y.Y., Li T., Liu H., Tang L., Li Y.C., Hu H.T., Su Y.F., Lin Y., Wang Y.Y., Li C., et al. Circulating levels of Elabela and Apelin in the second and third trimesters of pregnancies with gestational diabetes mellitus. Gynecol. Endocrinol. 2020;36:890–894. doi: 10.1080/09513590.2020.1739264. PubMed DOI
Aslan M., Celik O., Celik N., Turkcuoglu I., Yilmaz E., Karaer A., Simsek Y., Celik E., Aydin S. Cord blood nesfatin-1 and apelin-36 levels in gestational diabetes mellitus. Endocrine. 2012;41:424–429. doi: 10.1007/s12020-011-9577-8. PubMed DOI
Telejko B., Kuzmicki M., Wawrusiewicz-Kurylonek N., Szamatowicz J., Nikolajuk A., Zonenberg A., Zwierz-Gugala D., Jelski W., Laudański P., Wilczynski J., et al. Plasma apelin levels and apelin/APJ mRNA expression in patients with gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2010;87:176–183. doi: 10.1016/j.diabres.2009.10.018. PubMed DOI
Oncul M., Tuten A., Erman H., Gelisgen R., Benian A., Uzun H. Maternal and cord blood apelin, resistin and visfatin levels in gestational diabetes mellitus. Minerva Med. 2013;104:527–535. PubMed
Vaughan O.R., Powell T.L., Jansson T. Apelin is a novel regulator of human trophoblast amino acid transport. Am. J. Physiol. Endocrinol. Metab. 2019;316:E810–E816. doi: 10.1152/ajpendo.00012.2019. PubMed DOI PMC
Boyadzhieva M., Atanasova I., Zacharieva S., Kedikova S. Adipocytokines during pregnancy and postpartum in women with gestational diabetes and healthy controls. J. Endocrinol. Investig. 2013;36:944–949. PubMed
Aydin S. The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides. 2010;31:2236–2240. doi: 10.1016/j.peptides.2010.08.021. PubMed DOI
Akinci B., Celtik A., Tunali S., Genc S., Yuksel F., Secil M., Ozcan M.A., Bayraktar F. Circulating apelin levels are associated with cardiometabolic risk factors in women with previous gestational diabetes. Arch. Gynecol. Obstet. 2014;289:787–793. doi: 10.1007/s00404-013-3070-y. PubMed DOI
Cobble M., Bale B. Carotid intima-media thickness: Knowledge and application to everyday practice. Postgrad. Med. 2010;122:10–18. doi: 10.3810/pgm.2010.01.2091. PubMed DOI
Farahvar S., Walfisch A., Sheiner E. Gestational diabetes risk factors and long-term consequences for both mother and offspring: A literature review. Expert Rev. Endocrinol. Metab. 2019;14:63–74. doi: 10.1080/17446651.2018.1476135. PubMed DOI
Temur M., Yilmaz Ö., Taşgöz F.N., Kume T. The evaluation of serum apelin levels in patients complicated with preeclampsia. J. Matern. Neonatal Med. 2020 doi: 10.1080/14767058.2020.1814238. PubMed DOI
Sattar Taha A., Zahraei Z., Al-Hakeim H.K. Serum apelin and galectin-3 in preeclampsia in Iraq. Hypertens. Pregnancy. 2020;39:379–386. doi: 10.1080/10641955.2020.1777300. PubMed DOI
Gürlek B., Yılmaz A., Durakoğlugil M.E., Karakaş S., Kazaz İ.M., Önal Ö., Şatıroğlu Ö. Evaluation of serum apelin-13 and apelin-36 concentrations in preeclamptic pregnancies. J. Obstet. Gynaecol. Res. 2020;46:58–65. doi: 10.1111/jog.14137. PubMed DOI
Bortoff K.D., Qiu C., Runyon S., Williams M.A., Maitra R. Decreased maternal plasma apelin concentrations in preeclampsia. Hypertens. Pregnancy. 2012;31:398–404. doi: 10.3109/10641955.2012.690054. PubMed DOI
Deniz R., Baykus Y., Ustebay S., Ugur K., Yavuzkir Ş., Aydin S. Evaluation of elabela, apelin and nitric oxide findings in maternal blood of normal pregnant women, pregnant women with pre-eclampsia, severe pre-eclampsia and umbilical arteries and venules of newborns. J. Obstet. Gynaecol. Lahore. 2019;39:907–912. doi: 10.1080/01443615.2019.1572727. PubMed DOI
Inuzuka H., Nishizawa H., Inagaki A., Suzuki M., Ota S., Miyamura H., Miyazaki J., Sekiya T., Kurahashi H., Udagawa Y. Decreased expression of apelin in placentas from severe pre-eclampsia patients. Hypertens. Pregnancy. 2013;32:410–421. doi: 10.3109/10641955.2013.813535. PubMed DOI
Yamaleyeva L.M., Chappell M.C., Bridget Brosnihan K., Anton L., Caudell D.L., Shi S., McGee C., Pirro N., Gallagher P.E., Taylor R.N., et al. Downregulation of apelin in the human placental chorionic villi from preeclamptic pregnancies. Am. J. Physiol. Endocrinol. Metab. 2015;309:E852–E860. doi: 10.1152/ajpendo.00272.2015. PubMed DOI PMC
Simsek Y., Celik O., Yilmaz E., Karaer A., Dogan C., Aydin S., Ozer A. Serum levels of apelin, salusin-alpha and salusin-beta in normal pregnancy and preeclampsia. J. Matern. Neonatal Med. 2012;25:1705–1708. doi: 10.3109/14767058.2011.660221. PubMed DOI
Kucur M., Tuten A., Oncul M., Acikgoz A.S., Yuksel M.A., Imamoglu M., Ekmekci O.B., Yilmaz N., Madazli R. Maternal serum apelin and YKL-40 levels in early and late-onset pre-eclampsia. Hypertens. Pregnancy. 2014;33:467–475. doi: 10.3109/10641955.2014.944709. PubMed DOI
Ho L., Van Dijk M., Chye S.T.J., Messerschmidt D.M., Chng S.C., Ong S., Yi L.K., Boussata S., Goh G.H.Y., Afink G.B., et al. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 2017;357:707–713. doi: 10.1126/science.aam6607. PubMed DOI
Georgiadou D., Boussata S., Ranzijn W.H.M., Root L.E.A., Hillenius S., bij de Weg J.M., Abheiden C.N.H., de Boer M.A., de Vries J.I.P., Vrijkotte T.G.M., et al. Peptide hormone ELABELA enhances extravillous trophoblast differentiation, but placenta is not the major source of circulating ELABELA in pregnancy. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-55650-5. PubMed DOI PMC
Tomimatsu T., Mimura K., Matsuzaki S., Endo M., Kumasawa K., Kimura T. Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dysfunction Due to Placental Antiangiogenic Factors. Int. J. Mol. Sci. 2019;20:4246. doi: 10.3390/ijms20174246. PubMed DOI PMC
Wang X., Liang G., Guo Q., Cai W., Zhang X., Ni J., Tao Y., Niu X., Chen S. ELABELA improves endothelial cell function via the ELA–APJ axis by activating the PI3K/Akt signalling pathway in HUVECs and EA.hy926 cells. Clin. Exp. Pharmacol. Physiol. 2020;1440:1953–1964. doi: 10.1111/1440-1681.13382. PubMed DOI
Zhou L., Sun H., Cheng R., Fan X., Lai X.S., Deng C. ELABELA, as a potential diagnostic biomarker of preeclampsia, regulates abnormally shallow placentation via APJ. Am. J. Physiol. Endocrinol. Metab. 2019;316:E773–E781. doi: 10.1152/ajpendo.00383.2018. PubMed DOI
Para R., Romero R., Gomez-Lopez N., Tarca A.L., Panaitescu B., Done B., Hsu R., Pacora P., Hsu C.D. Maternal circulating concentrations of soluble Fas and Elabela in early- and late-onset preeclampsia. J. Matern. Neonatal Med. 2020 doi: 10.1080/14767058.2020.1716720. PubMed DOI PMC
Pritchard N., Kaitu’u-Lino T.J., Gong S., Dopierala J., Smith G.C.S., Charnock-Jones D.S., Tong S. ELABELA/APELA Levels Are Not Decreased in the Maternal Circulation or Placenta among Women with Preeclampsia. Am. J. Pathol. 2018;188:1749–1753. doi: 10.1016/j.ajpath.2018.04.008. PubMed DOI PMC
Yamaleyeva L.M., Brosnihan K.B., Elsangeedy E., McGee C., Shi S., Caudell D., Miller C., Varagic J., Bader M., Dechend R., et al. Systemic Outcomes of (Pyr1)-Apelin-13 Infusion at Mid-Late Pregnancy in a Rat Model with Preeclamptic Features. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-44971-0. PubMed DOI PMC
Wang C., Liu X., Kong D., Qin X., Li Y., Teng X., Huang X. Apelin as a novel drug for treating preeclampsia. Exp. Ther. Med. 2017;14:5917–5923. doi: 10.3892/etm.2017.5304. PubMed DOI PMC
Cekmez F., Canpolat F.E., Pirgon O., Çetinkaya M., Aydinoz S., Suleymanoglu S., Ipcioglu O.M., Sarici S.U. Apelin, vaspin, visfatin and adiponectin in large for gestational age infants with insulin resistance. Cytokine. 2011;56:387–391. doi: 10.1016/j.cyto.2011.06.007. PubMed DOI
Malamitsi-Puchner A., Gourgiotis D., Boutsikou M., Baka S., Hassiakos D., Briana D.D. Circulating apelin concentrations in mother/infant pairs at term. Acta Paediatr. Int. J. Paediatr. 2007;96:1751–1754. doi: 10.1111/j.1651-2227.2007.00565.x. PubMed DOI
Van Mieghem T., Doherty A., Baczyk D., Drewlo S., Baud D., Carvalho J., Kingdom J. Apelin in Normal Pregnancy and Pregnancies Complicated by Placental Insufficiency. Reprod. Sci. 2016;23:1037–1043. doi: 10.1177/1933719116630422. PubMed DOI
Lim R., Barker G., Riley C., Lappas M. Apelin is decreased with human preterm and term labor and regulates prolabor mediators in human primary amnion cells. Reprod. Sci. 2013;20:957–967. doi: 10.1177/1933719112472741. PubMed DOI PMC
Hehir M.P., Morrison J.J. The adipokine apelin and human uterine contractility. Am. J. Obstet. Gynecol. 2012;206:359.e1–359.e5. doi: 10.1016/j.ajog.2012.01.032. PubMed DOI
Carpenter J.R. Intrapartum management of the obese gravida. Clin. Obstet. Gynecol. 2016;59:172–179. doi: 10.1097/GRF.0000000000000174. PubMed DOI
Caglayan E.K., Engin-Ustun Y., Sari N., Gocmen A.Y., Polat M.F. The effects of prolonged fasting on the levels of adiponectin, leptin, apelin, and omentin in pregnant women. J. Obstet. Gynaecol. Lahore. 2016;36:555–558. doi: 10.3109/01443615.2015.1103716. PubMed DOI