• This record comes from PubMed

Nontargeted lipidomic characterization of porcine organs using hydrophilic interaction liquid chromatography and off-line two-dimensional liquid chromatography-electrospray ionization mass spectrometry

. 2013 Sep ; 48 (9) : 915-28. [epub] 20130803

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Lipids form a significant part of animal organs and they are responsible for important biological functions, such as semi-permeability and fluidity of membranes, signaling activity, anti-inflammatory processes, etc. We have performed a comprehensive nontargeted lipidomic characterization of porcine brain, heart, kidney, liver, lung, spinal cord, spleen, and stomach using hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI/MS) to describe the representation of individual lipid classes in these organs. Detailed information on identified lipid species inside classes are obtained based on relative abundances of deprotonated molecules [M-H](-) in the negative-ion ESI mass spectra, which provides important knowledge on phosphatidylethanolamines and their different forms of fatty acyl linkage (ethers and plasmalogens), phosphatidylinositols, and hexosylceramides containing nonhydroxy- and hydroxy-fatty acyls. The detailed analysis of identified lipid classes using reversed-phase liquid chromatography in the second dimension was performed for porcine brain to determine more than 160 individual lipid species containing attached fatty acyls of different acyl chain length, double-bond number, and positions on the glycerol skeleton. The fatty acid composition of porcine organs is determined by gas chromatography with flame ionization detection after the transesterification with sodium methoxide.

See more in PubMed

Anal Chem. 2009 Jun 1;81(11):4356-68 PubMed

J Chromatogr A. 2008 Jun 13;1194(1):96-102 PubMed

J Chromatogr A. 2006 Apr 21;1112(1-2):269-75 PubMed

J Lipid Res. 2010 Mar;51(3):660-71 PubMed

J Chromatogr A. 2006 Jan 6;1101(1-2):226-37 PubMed

J Am Soc Mass Spectrom. 2005 Dec;16(12):2052-6 PubMed

J Chromatogr A. 2011 Aug 5;1218(31):5146-56 PubMed

Mass Spectrom Rev. 2012 Jan-Feb;31(1):134-78 PubMed

J Lipid Res. 2009 Aug;50(8):1692-707 PubMed

Rapid Commun Mass Spectrom. 2003;17(19):2203-7 PubMed

J Chromatogr A. 2010 Jun 18;1217(25):3992-4003 PubMed

J Chromatogr A. 2011 Oct 21;1218(42):7499-510 PubMed

Nat Chem Biol. 2009 Sep;5(9):602-6 PubMed

J Lipid Res. 2006 Apr;47(4):804-14 PubMed

J Chromatogr A. 2010 Dec 3;1217(49):7738-48 PubMed

Biochim Biophys Acta. 2012 Sep;1822(9):1442-52 PubMed

J Biol Chem. 1957 May;226(1):497-509 PubMed

J Psychiatr Res. 2010 Feb;44(3):177-82 PubMed

J Lipid Res. 2005 May;46(5):839-61 PubMed

J Chromatogr A. 2010 Jun 18;1217(25):4229-39 PubMed

Metabolites. 2011 Dec 1;1(1):21-40 PubMed

Anal Chem. 2012 Nov 20;84(22):10064-70 PubMed

J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Sep 15;877(26):2673-95 PubMed

Rapid Commun Mass Spectrom. 2008 Jun;22(12):1853-62 PubMed

J Agric Food Chem. 2009 Aug 12;57(15):6888-98 PubMed

Spectrochim Acta A Mol Biomol Spectrosc. 2009 Jan;71(5):2069-75 PubMed

J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Sep 15;877(26):2664-72 PubMed

J Chromatogr A. 2008 Jul 11;1198-1199:115-30 PubMed

FEBS J. 2012 Aug;279(15):2610-23 PubMed

Prog Lipid Res. 2001 May;40(3):199-229 PubMed

J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Sep 15;877(26):2836-46 PubMed

J Chromatogr A. 2010 Jun 18;1217(25):4087-99 PubMed

J Neurochem. 2003 Mar;84(5):1051-65 PubMed

J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Jun 1;852(1-2):268-77 PubMed

Am J Clin Nutr. 2006 Jun;83(6 Suppl):1505S-1519S PubMed

Magn Reson Med. 2000 Aug;44(2):215-23 PubMed

J Chromatogr B Biomed Sci Appl. 1998 Apr 24;708(1-2):21-6 PubMed

J Lipid Res. 2010 Nov;51(11):3299-305 PubMed

J Sep Sci. 2005 Aug;28(12):1315-33 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...