Adsorption of Organic Molecules to van der Waals Materials: Comparison of Fluorographene and Fluorographite with Graphene and Graphite

. 2017 Mar 14 ; 13 (3) : 1328-1340. [epub] 20170214

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28145699

Understanding strength and nature of noncovalent binding to surfaces imposes significant challenge both for computations and experiments. We explored the adsorption of five small nonpolar organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate) to fluorographene and fluorographite using inverse gas chromatography and theoretical calculations, providing new insights into the strength and nature of adsorption of small organic molecules on these surfaces. The measured adsorption enthalpies on fluorographite range from -7 to -13 kcal/mol and are by 1-2 kcal/mol lower than those measured on graphene/graphite, which indicates higher affinity of organic adsorbates to fluorographene than to graphene. The dispersion-corrected functionals performed well, and the nonlocal vdW DFT functionals (particularly optB86b-vdW) achieved the best agreement with the experimental data. Computations show that the adsorption enthalpies are controlled by the interaction energy, which is dominated by London dispersion forces (∼70%). The calculations also show that bonding to structural features, like edges and steps, as well as defects does not significantly increase the adsorption enthalpies, which explains a low sensitivity of measured adsorption enthalpies to coverage. The adopted Langmuir model for fitting experimental data enabled determination of adsorption entropies. The adsorption on the fluorographene/fluorographite surface resulted in an entropy loss equal to approximately 40% of the gas phase entropy.

Zobrazit více v PubMed

Schwierz F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. 10.1038/nnano.2010.89. PubMed DOI

Naik A. K.; Hanay M. S.; Hiebert W. K.; Feng X. L.; Roukes M. L. Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 2009, 4, 445–450. 10.1038/nnano.2009.152. PubMed DOI PMC

Schedin F.; Geim A. K.; Morozov S. V.; Hill E. W.; Blake P.; Katsnelson M. I.; Novoselov K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. 10.1038/nmat1967. PubMed DOI

Ambrosi A.; Chua C. K.; Bonanni A.; Pumera M. Electrochemistry of Graphene and Related Materials. Chem. Rev. 2014, 114, 7150–7188. 10.1021/cr500023c. PubMed DOI

Kulkarni G. S.; Reddy K.; Zang W. Z.; Lee K.; Fan X. D.; Zhong Z. H. Electrical Probing and Tuning of Molecular Physisorption on Graphene. Nano Lett. 2016, 16, 695–700. 10.1021/acs.nanolett.5b04500. PubMed DOI

Nair R. R.; Ren W. C.; Jalil R.; Riaz I.; Kravets V. G.; Britnell L.; Blake P.; Schedin F.; Mayorov A. S.; Yuan S. J.; Katsnelson M. I.; Cheng H. M.; Strupinski W.; Bulusheva L. G.; Okotrub A. V.; Grigorieva I. V.; Grigorenko A. N.; Novoselov K. S.; Geim A. K. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6, 2877–2884. 10.1002/smll.201001555. PubMed DOI

Robinson J. T.; Burgess J. S.; Junkermeier C. E.; Badescu S. C.; Reinecke T. L.; Perkins F. K.; Zalalutdniov M. K.; Baldwin J. W.; Culbertson J. C.; Sheehan P. E.; Snow E. S. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. 10.1021/nl101437p. PubMed DOI

Zbořil R.; Karlický F.; Bourlinos A. B.; Steriotis T. A.; Stubos A. K.; Georgakilas V.; Šafářová K.; Jančík D.; Trapalis C.; Otyepka M. Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small 2010, 6, 2885–2891. 10.1002/smll.201001401. PubMed DOI PMC

Urbanová V.; Karlický F.; Matěj A.; Šembera F.; Janoušek J.; Perman J. A.; Ranc V.; Čépe K.; Michl J.; Otyepka M.; Zbořil R. Fluorinated graphenes as advanced biosensors - Effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. Nanoscale 2016, 8, 12134–12142. 10.1039/C6NR00353B. PubMed DOI

Cheng H. S.; Sha X. W.; Chen L.; Cooper A. C.; Foo M. L.; Lau G. C.; Bailey W. H.; Pez G. P. An Enhanced Hydrogen Adsorption Enthalpy for Fluoride Intercalated Graphite Compounds. J. Am. Chem. Soc. 2009, 131, 17732–17733. 10.1021/ja907232y. PubMed DOI

Seydou M.; Lassoued K.; Tielens F.; Maurel F.; Raouafi F.; Diawara B. A DFT-D study of hydrogen adsorption on functionalized graphene. RSC Adv. 2015, 5, 14400–14406. 10.1039/C4RA15665J. DOI

Lazar P.; Karlický F.; Jurečka P.; Kocman M.; Otyepková E.; Šafářová K.; Otyepka M. Adsorption of Small Organic Molecules on Graphene. J. Am. Chem. Soc. 2013, 135, 6372–6377. 10.1021/ja403162r. PubMed DOI

Schrier J. Fluorinated and Nanoporous Graphene Materials As Sorbents for Gas Separations. ACS Appl. Mater. Interfaces 2011, 3, 4451–4458. 10.1021/am2011349. PubMed DOI

Reatto L.; Galli D. E.; Nava M.; Cole M. W. Novel behavior of monolayer quantum gases on graphene, graphane and fluorographene. J. Phys.: Condens. Matter 2013, 25, 443001.10.1088/0953-8984/25/44/443001. PubMed DOI

Campbell C. T.; Sellers J. R. V. Enthalpies and Entropies of Adsorption on Well-Defined Oxide Surfaces: Experimental Measurements. Chem. Rev. 2013, 113, 4106–4135. 10.1021/cr300329s. PubMed DOI

Ho R.; Heng J. Y. Y. A Review of Inverse Gas Chromatography and its Development as a Tool to Characterize Anisotropic Surface Properties of Pharmaceutical Solids. KONA 2013, 30, 164–180. 10.14356/kona.2013016. DOI

Mohammadi-Jam S.; Waters K. E. Inverse gas chromatography applications: A review. Adv. Colloid Interface Sci. 2014, 212, 21–44. 10.1016/j.cis.2014.07.002. PubMed DOI

Karlický F.; Otyepková E.; Banáš P.; Lazar P.; Kocman M.; Otyepka M. Interplay between Ethanol Adsorption to High-Energy Sites and Clustering on Graphene and Graphite Alters the Measured Isosteric Adsorption Enthalpies. J. Phys. Chem. C 2015, 119, 20535–20543. 10.1021/acs.jpcc.5b06755. DOI

Lazar P.; Otyepková E.; Banáš P.; Fargašová A.; Šafářová K.; Lapčík L.; Pechoušek J.; Zbořil R.; Otyepka M. The Nature of High Surface Energy Sites in Graphene and Graphite. Carbon 2014, 73, 448–453. 10.1016/j.carbon.2014.03.010. DOI

Otyepková E.; Lazar P.; Čépe K.; Tomanec O.; Otyepka M. Organic adsorbates have higher affinities to fluorographene than to graphene. Appl. Mater. Today 2016, 5, 142–149. 10.1016/j.apmt.2016.09.016. DOI

Karlický F.; Lazar P.; Dubecký M.; Otyepka M. Random Phase Approximation in Surface Chemistry: Water Splitting on Iron. J. Chem. Theory Comput. 2013, 9, 3670–3676. 10.1021/ct400425p. PubMed DOI

Pykal M.; Jurečka P.; Karlický F.; Otyepka M. Modelling of graphene functionalization. Phys. Chem. Chem. Phys. 2016, 18, 6351–6372. 10.1039/C5CP03599F. PubMed DOI

Karlický F.; Lepetit B.; Lemoine D. Quantum modelling of hydrogen chemisorption on graphene and graphite. J. Chem. Phys. 2014, 140, 124702.10.1063/1.4867995. PubMed DOI

Řezáč J.; Hobza P. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem. Rev. 2016, 116, 5038–71. 10.1021/acs.chemrev.5b00526. PubMed DOI

Grimme S.; Hansen A.; Brandenburg J. G.; Bannwarth C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154. 10.1021/acs.chemrev.5b00533. PubMed DOI

Dubecký M.; Mitas L.; Jurečka P. Noncovalent Interactions by Quantum Monte Carlo. Chem. Rev. 2016, 116, 5188–5215. 10.1021/acs.chemrev.5b00577. PubMed DOI

Dubecký M. Quantum Monte Carlo for Noncovalent Interactions: A Tutorial Review. Acta Phys. Slovaca 2014, 64, 501–575. 10.2478/apsrt-2014-0005. DOI

Szalewicz K. Symmetry-adapted perturbation theory of intermolecular forces. Wires Comput. Mol. Sci. 2012, 2, 254–272. 10.1002/wcms.86. DOI

Sedlák R.; Riley K. E.; Řezáč J.; Pitoňák M.; Hobza P. MP2.5 and MP2.X: Approaching CCSD(T) Quality Description of Noncovalent Interaction at the Cost of a Single CCSD Iteration. ChemPhysChem 2013, 14, 698–707. 10.1002/cphc.201200850. PubMed DOI

Grimme S. Density functional theory with London dispersion corrections. Wires Comput. Mol. Sci. 2011, 1, 211–228. 10.1002/wcms.30. DOI

Řezáč J.; Huang Y. H.; Hobza P.; Beran G. J. O. Benchmark Calculations of Three-Body Intermolecular Interactions and the Performance of Low-Cost Electronic Structure Methods. J. Chem. Theory Comput. 2015, 11, 3065–3079. 10.1021/acs.jctc.5b00281. PubMed DOI

Pitoňák M.; Neogrády P.; Hobza P. Three- and four-body nonadditivities in nucleic acid tetramers: a CCSD(T) study. Phys. Chem. Chem. Phys. 2010, 12, 1369–1378. 10.1039/B919354E. PubMed DOI

Brandenburg J. G.; Maas T.; Grimme S. Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs. J. Chem. Phys. 2015, 142, 124104.10.1063/1.4916070. PubMed DOI

Grimme S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem. - Eur. J. 2012, 18, 9955–9964. 10.1002/chem.201200497. PubMed DOI

Bučko T.; Lebégue S.; Gould T.; Ángyán J. G. Many-body dispersion corrections for periodic systems: an efficient reciprocal space implementation. J. Phys.: Condens. Matter 2016, 28, 045201.10.1088/0953-8984/28/4/045201. PubMed DOI

Sato Y.; Itoh K.; Hagiwara R.; Fukunaga T.; Ito Y. On the so-called ″semi-ionic″ C-F bond character in fluorine-GIC. Carbon 2004, 42, 3243–3249. 10.1016/j.carbon.2004.08.012. DOI

Karlický F.; Otyepka M. Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G(0)W(0), GW(0) and GW Calculations on Top of PBE and HSE06 Orbitals. J. Chem. Theory Comput. 2013, 9, 4155–4164. 10.1021/ct400476r. PubMed DOI

Mata R. A.; Costa Cabral B. J. Structural, energetic, and electronic properties of (CH3CN)(2–8) clusters by density functional theory. J. Mol. Struct.: THEOCHEM 2004, 673, 155–164. 10.1016/j.theochem.2003.12.011. DOI

Guan J. W.; Hu Y. J.; Xie M.; Bernstein E. R. Weak carbonyl-methyl intermolecular interactions in acetone clusters explored by IR plus VUV spectroscopy. Chem. Phys. 2012, 405, 117–123. 10.1016/j.chemphys.2012.06.017. DOI

Tamenori Y.; Takahashi O.; Yamashita K.; Yamaguchi T.; Okada K.; Tabayashi K.; Gejo T.; Honma K. Hydrogen bonding in acetone clusters probed by near-edge x-ray absorption fine structure spectroscopy in the carbon and oxygen K-edge regions. J. Chem. Phys. 2009, 131, 174311.10.1063/1.3257962. PubMed DOI

DiStasio R. A.; von Lilienfeld O. A.; Tkatchenko A. Collective many-body van der Waals interactions in molecular systems. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 14791–14795. 10.1073/pnas.1208121109. PubMed DOI PMC

Campbell C. T.; Sellers J. R. V. The Entropies of Adsorbed Molecules. J. Am. Chem. Soc. 2012, 134, 18109–18115. 10.1021/ja3080117. PubMed DOI

Savara A.; Schmidt C. M.; Geiger F. M.; Weitz E. Adsorption Entropies and Enthalpies and Their Implications for Adsorbate Dynamics. J. Phys. Chem. C 2009, 113, 2806–2815. 10.1021/jp806221j. DOI

Lazar P.; Otyepková E.; Karlický F.; Čépe K.; Otyepka M. The surface and structural properties of graphite fluoride. Carbon 2015, 94, 804–809. 10.1016/j.carbon.2015.07.064. DOI

Grimme S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. 10.1002/jcc.20495. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A.; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

Halkier A.; Helgaker T.; Jorgensen P.; Klopper W.; Koch H.; Olsen J.; Wilson A. K. Basis-set convergence in correlated calculations on Ne, N-2, and H2O. Chem. Phys. Lett. 1998, 286, 243–252. 10.1016/S0009-2614(98)00111-0. DOI

Halkier A.; Helgaker T.; Jorgensen P.; Klopper W.; Olsen J. Basis-set convergence of the energy in molecular Hartree-Fock calculations. Chem. Phys. Lett. 1999, 302, 437–446. 10.1016/S0009-2614(99)00179-7. DOI

Boys S. F.; Bernardi F. Calculation of Small Molecular Interactions By Differences of Separate Total Energies - Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553.10.1080/00268977000101561. DOI

Furche F.; Ahlrichs R.; Hattig C.; Klopper W.; Sierka M.; Weigend F. Turbomole. Wires Comput. Mol. Sci. 2014, 4, 91–100. 10.1002/wcms.1162. DOI

Řezáč J. Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 2016, 37, 1230–7. 10.1002/jcc.24312. PubMed DOI

Aquilante F.; Autschbach J.; Carlson R. K.; Chibotaru L. F.; Delcey M. G.; De Vico L.; Fdez. Galvan I.; Ferre N.; Frutos L. M.; Gagliardi L.; Garavelli M.; Giussani A.; Hoyer C. E.; Li Manni G.; Lischka H.; Ma D. X.; Malmqvist P. A.; Muller T.; Nenov A.; Olivucci M.; Pedersen T. B.; Peng D. L.; Plasser F.; Pritchard B.; Reiher M.; Rivalta I.; Schapiro I.; Segarra-Marti J.; Stenrup M.; Truhlar D. G.; Ungur L.; Valentini A.; Vancoillie S.; Veryazov V.; Vysotskiy V. P.; Weingart O.; Zapata F.; Lindh R. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 2016, 37, 506–541. 10.1002/jcc.24221. PubMed DOI

Hesselmann A.; Jansen G.; Schutz M. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. J. Chem. Phys. 2005, 122, 014103.10.1063/1.1824898. PubMed DOI

Werner H. J.; Knowles P. J.; Knizia G.; Manby F. R.; Schutz M. Molpro: a general-purpose quantum chemistry program package. Wires Comput. Mol. Sci. 2012, 2, 242–253. 10.1002/wcms.82. DOI

Blochl P. E. Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G.; Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758–1775. 10.1103/PhysRevB.59.1758. DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI

Tkatchenko A.; Scheffler M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 073005.10.1103/PhysRevLett.102.073005. PubMed DOI

Tkatchenko A.; DiStasio R. A.; Car R.; Scheffler M. Accurate and Efficient Method for Many-Body van der Waals Interactions. Phys. Rev. Lett. 2012, 108, 236402.10.1103/PhysRevLett.108.236402. PubMed DOI

Dion M.; Rydberg H.; Schroder E.; Langreth D. C.; Lundqvist B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.10.1103/PhysRevLett.92.246401. PubMed DOI

Lee K.; Murray E. D.; Kong L. Z.; Lundqvist B. I.; Langreth D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 081101.10.1103/PhysRevB.82.081101. DOI

Klimeš J.; Bowler D. R.; Michaelides A. Van der Waals Density Functionals Applied to Solids. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 195131.10.1103/PhysRevB.83.195131. PubMed DOI

Leenaerts O.; Peelaers H.; Hernandez-Nieves A. D.; Partoens B.; Peeters F. M. First-principles investigation of graphene fluoride and graphane. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 195436.10.1103/PhysRevB.82.195436. DOI

Karlický F.; Zbořil R.; Otyepka M. Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets. J. Chem. Phys. 2012, 137, 034709.10.1063/1.4736998. PubMed DOI

Karlický F.; Otyepka M. Band gaps and optical spectra from single- and double-layer fluorographene to graphite fluoride: many-body effects and excitonic states. Ann. Phys. 2014, 526, 408–414. 10.1002/andp.201400095. DOI

Becke A. D. Density-Functional Thermochemistry 0.3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI

Lee C. T.; Yang W. T.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Schafer A.; Huber C.; Ahlrichs R. Fully Optimized Contracted Gaussian-Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829–5835. 10.1063/1.467146. DOI

Zhao Y.; Truhlar D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. 10.1007/s00214-007-0310-x. DOI

Svoboda V.; Majer V.. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation; Blackwell Scientific Publications: Oxford, 1985; Vol. 32.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...