Adsorption of Organic Molecules to van der Waals Materials: Comparison of Fluorographene and Fluorographite with Graphene and Graphite
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28145699
PubMed Central
PMC5352977
DOI
10.1021/acs.jctc.6b01130
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Understanding strength and nature of noncovalent binding to surfaces imposes significant challenge both for computations and experiments. We explored the adsorption of five small nonpolar organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate) to fluorographene and fluorographite using inverse gas chromatography and theoretical calculations, providing new insights into the strength and nature of adsorption of small organic molecules on these surfaces. The measured adsorption enthalpies on fluorographite range from -7 to -13 kcal/mol and are by 1-2 kcal/mol lower than those measured on graphene/graphite, which indicates higher affinity of organic adsorbates to fluorographene than to graphene. The dispersion-corrected functionals performed well, and the nonlocal vdW DFT functionals (particularly optB86b-vdW) achieved the best agreement with the experimental data. Computations show that the adsorption enthalpies are controlled by the interaction energy, which is dominated by London dispersion forces (∼70%). The calculations also show that bonding to structural features, like edges and steps, as well as defects does not significantly increase the adsorption enthalpies, which explains a low sensitivity of measured adsorption enthalpies to coverage. The adopted Langmuir model for fitting experimental data enabled determination of adsorption entropies. The adsorption on the fluorographene/fluorographite surface resulted in an entropy loss equal to approximately 40% of the gas phase entropy.
Zobrazit více v PubMed
Schwierz F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. 10.1038/nnano.2010.89. PubMed DOI
Naik A. K.; Hanay M. S.; Hiebert W. K.; Feng X. L.; Roukes M. L. Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 2009, 4, 445–450. 10.1038/nnano.2009.152. PubMed DOI PMC
Schedin F.; Geim A. K.; Morozov S. V.; Hill E. W.; Blake P.; Katsnelson M. I.; Novoselov K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. 10.1038/nmat1967. PubMed DOI
Ambrosi A.; Chua C. K.; Bonanni A.; Pumera M. Electrochemistry of Graphene and Related Materials. Chem. Rev. 2014, 114, 7150–7188. 10.1021/cr500023c. PubMed DOI
Kulkarni G. S.; Reddy K.; Zang W. Z.; Lee K.; Fan X. D.; Zhong Z. H. Electrical Probing and Tuning of Molecular Physisorption on Graphene. Nano Lett. 2016, 16, 695–700. 10.1021/acs.nanolett.5b04500. PubMed DOI
Nair R. R.; Ren W. C.; Jalil R.; Riaz I.; Kravets V. G.; Britnell L.; Blake P.; Schedin F.; Mayorov A. S.; Yuan S. J.; Katsnelson M. I.; Cheng H. M.; Strupinski W.; Bulusheva L. G.; Okotrub A. V.; Grigorieva I. V.; Grigorenko A. N.; Novoselov K. S.; Geim A. K. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6, 2877–2884. 10.1002/smll.201001555. PubMed DOI
Robinson J. T.; Burgess J. S.; Junkermeier C. E.; Badescu S. C.; Reinecke T. L.; Perkins F. K.; Zalalutdniov M. K.; Baldwin J. W.; Culbertson J. C.; Sheehan P. E.; Snow E. S. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. 10.1021/nl101437p. PubMed DOI
Zbořil R.; Karlický F.; Bourlinos A. B.; Steriotis T. A.; Stubos A. K.; Georgakilas V.; Šafářová K.; Jančík D.; Trapalis C.; Otyepka M. Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small 2010, 6, 2885–2891. 10.1002/smll.201001401. PubMed DOI PMC
Urbanová V.; Karlický F.; Matěj A.; Šembera F.; Janoušek J.; Perman J. A.; Ranc V.; Čépe K.; Michl J.; Otyepka M.; Zbořil R. Fluorinated graphenes as advanced biosensors - Effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. Nanoscale 2016, 8, 12134–12142. 10.1039/C6NR00353B. PubMed DOI
Cheng H. S.; Sha X. W.; Chen L.; Cooper A. C.; Foo M. L.; Lau G. C.; Bailey W. H.; Pez G. P. An Enhanced Hydrogen Adsorption Enthalpy for Fluoride Intercalated Graphite Compounds. J. Am. Chem. Soc. 2009, 131, 17732–17733. 10.1021/ja907232y. PubMed DOI
Seydou M.; Lassoued K.; Tielens F.; Maurel F.; Raouafi F.; Diawara B. A DFT-D study of hydrogen adsorption on functionalized graphene. RSC Adv. 2015, 5, 14400–14406. 10.1039/C4RA15665J. DOI
Lazar P.; Karlický F.; Jurečka P.; Kocman M.; Otyepková E.; Šafářová K.; Otyepka M. Adsorption of Small Organic Molecules on Graphene. J. Am. Chem. Soc. 2013, 135, 6372–6377. 10.1021/ja403162r. PubMed DOI
Schrier J. Fluorinated and Nanoporous Graphene Materials As Sorbents for Gas Separations. ACS Appl. Mater. Interfaces 2011, 3, 4451–4458. 10.1021/am2011349. PubMed DOI
Reatto L.; Galli D. E.; Nava M.; Cole M. W. Novel behavior of monolayer quantum gases on graphene, graphane and fluorographene. J. Phys.: Condens. Matter 2013, 25, 443001.10.1088/0953-8984/25/44/443001. PubMed DOI
Campbell C. T.; Sellers J. R. V. Enthalpies and Entropies of Adsorption on Well-Defined Oxide Surfaces: Experimental Measurements. Chem. Rev. 2013, 113, 4106–4135. 10.1021/cr300329s. PubMed DOI
Ho R.; Heng J. Y. Y. A Review of Inverse Gas Chromatography and its Development as a Tool to Characterize Anisotropic Surface Properties of Pharmaceutical Solids. KONA 2013, 30, 164–180. 10.14356/kona.2013016. DOI
Mohammadi-Jam S.; Waters K. E. Inverse gas chromatography applications: A review. Adv. Colloid Interface Sci. 2014, 212, 21–44. 10.1016/j.cis.2014.07.002. PubMed DOI
Karlický F.; Otyepková E.; Banáš P.; Lazar P.; Kocman M.; Otyepka M. Interplay between Ethanol Adsorption to High-Energy Sites and Clustering on Graphene and Graphite Alters the Measured Isosteric Adsorption Enthalpies. J. Phys. Chem. C 2015, 119, 20535–20543. 10.1021/acs.jpcc.5b06755. DOI
Lazar P.; Otyepková E.; Banáš P.; Fargašová A.; Šafářová K.; Lapčík L.; Pechoušek J.; Zbořil R.; Otyepka M. The Nature of High Surface Energy Sites in Graphene and Graphite. Carbon 2014, 73, 448–453. 10.1016/j.carbon.2014.03.010. DOI
Otyepková E.; Lazar P.; Čépe K.; Tomanec O.; Otyepka M. Organic adsorbates have higher affinities to fluorographene than to graphene. Appl. Mater. Today 2016, 5, 142–149. 10.1016/j.apmt.2016.09.016. DOI
Karlický F.; Lazar P.; Dubecký M.; Otyepka M. Random Phase Approximation in Surface Chemistry: Water Splitting on Iron. J. Chem. Theory Comput. 2013, 9, 3670–3676. 10.1021/ct400425p. PubMed DOI
Pykal M.; Jurečka P.; Karlický F.; Otyepka M. Modelling of graphene functionalization. Phys. Chem. Chem. Phys. 2016, 18, 6351–6372. 10.1039/C5CP03599F. PubMed DOI
Karlický F.; Lepetit B.; Lemoine D. Quantum modelling of hydrogen chemisorption on graphene and graphite. J. Chem. Phys. 2014, 140, 124702.10.1063/1.4867995. PubMed DOI
Řezáč J.; Hobza P. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem. Rev. 2016, 116, 5038–71. 10.1021/acs.chemrev.5b00526. PubMed DOI
Grimme S.; Hansen A.; Brandenburg J. G.; Bannwarth C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154. 10.1021/acs.chemrev.5b00533. PubMed DOI
Dubecký M.; Mitas L.; Jurečka P. Noncovalent Interactions by Quantum Monte Carlo. Chem. Rev. 2016, 116, 5188–5215. 10.1021/acs.chemrev.5b00577. PubMed DOI
Dubecký M. Quantum Monte Carlo for Noncovalent Interactions: A Tutorial Review. Acta Phys. Slovaca 2014, 64, 501–575. 10.2478/apsrt-2014-0005. DOI
Szalewicz K. Symmetry-adapted perturbation theory of intermolecular forces. Wires Comput. Mol. Sci. 2012, 2, 254–272. 10.1002/wcms.86. DOI
Sedlák R.; Riley K. E.; Řezáč J.; Pitoňák M.; Hobza P. MP2.5 and MP2.X: Approaching CCSD(T) Quality Description of Noncovalent Interaction at the Cost of a Single CCSD Iteration. ChemPhysChem 2013, 14, 698–707. 10.1002/cphc.201200850. PubMed DOI
Grimme S. Density functional theory with London dispersion corrections. Wires Comput. Mol. Sci. 2011, 1, 211–228. 10.1002/wcms.30. DOI
Řezáč J.; Huang Y. H.; Hobza P.; Beran G. J. O. Benchmark Calculations of Three-Body Intermolecular Interactions and the Performance of Low-Cost Electronic Structure Methods. J. Chem. Theory Comput. 2015, 11, 3065–3079. 10.1021/acs.jctc.5b00281. PubMed DOI
Pitoňák M.; Neogrády P.; Hobza P. Three- and four-body nonadditivities in nucleic acid tetramers: a CCSD(T) study. Phys. Chem. Chem. Phys. 2010, 12, 1369–1378. 10.1039/B919354E. PubMed DOI
Brandenburg J. G.; Maas T.; Grimme S. Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs. J. Chem. Phys. 2015, 142, 124104.10.1063/1.4916070. PubMed DOI
Grimme S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem. - Eur. J. 2012, 18, 9955–9964. 10.1002/chem.201200497. PubMed DOI
Bučko T.; Lebégue S.; Gould T.; Ángyán J. G. Many-body dispersion corrections for periodic systems: an efficient reciprocal space implementation. J. Phys.: Condens. Matter 2016, 28, 045201.10.1088/0953-8984/28/4/045201. PubMed DOI
Sato Y.; Itoh K.; Hagiwara R.; Fukunaga T.; Ito Y. On the so-called ″semi-ionic″ C-F bond character in fluorine-GIC. Carbon 2004, 42, 3243–3249. 10.1016/j.carbon.2004.08.012. DOI
Karlický F.; Otyepka M. Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G(0)W(0), GW(0) and GW Calculations on Top of PBE and HSE06 Orbitals. J. Chem. Theory Comput. 2013, 9, 4155–4164. 10.1021/ct400476r. PubMed DOI
Mata R. A.; Costa Cabral B. J. Structural, energetic, and electronic properties of (CH3CN)(2–8) clusters by density functional theory. J. Mol. Struct.: THEOCHEM 2004, 673, 155–164. 10.1016/j.theochem.2003.12.011. DOI
Guan J. W.; Hu Y. J.; Xie M.; Bernstein E. R. Weak carbonyl-methyl intermolecular interactions in acetone clusters explored by IR plus VUV spectroscopy. Chem. Phys. 2012, 405, 117–123. 10.1016/j.chemphys.2012.06.017. DOI
Tamenori Y.; Takahashi O.; Yamashita K.; Yamaguchi T.; Okada K.; Tabayashi K.; Gejo T.; Honma K. Hydrogen bonding in acetone clusters probed by near-edge x-ray absorption fine structure spectroscopy in the carbon and oxygen K-edge regions. J. Chem. Phys. 2009, 131, 174311.10.1063/1.3257962. PubMed DOI
DiStasio R. A.; von Lilienfeld O. A.; Tkatchenko A. Collective many-body van der Waals interactions in molecular systems. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 14791–14795. 10.1073/pnas.1208121109. PubMed DOI PMC
Campbell C. T.; Sellers J. R. V. The Entropies of Adsorbed Molecules. J. Am. Chem. Soc. 2012, 134, 18109–18115. 10.1021/ja3080117. PubMed DOI
Savara A.; Schmidt C. M.; Geiger F. M.; Weitz E. Adsorption Entropies and Enthalpies and Their Implications for Adsorbate Dynamics. J. Phys. Chem. C 2009, 113, 2806–2815. 10.1021/jp806221j. DOI
Lazar P.; Otyepková E.; Karlický F.; Čépe K.; Otyepka M. The surface and structural properties of graphite fluoride. Carbon 2015, 94, 804–809. 10.1016/j.carbon.2015.07.064. DOI
Grimme S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. 10.1002/jcc.20495. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A.; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
Halkier A.; Helgaker T.; Jorgensen P.; Klopper W.; Koch H.; Olsen J.; Wilson A. K. Basis-set convergence in correlated calculations on Ne, N-2, and H2O. Chem. Phys. Lett. 1998, 286, 243–252. 10.1016/S0009-2614(98)00111-0. DOI
Halkier A.; Helgaker T.; Jorgensen P.; Klopper W.; Olsen J. Basis-set convergence of the energy in molecular Hartree-Fock calculations. Chem. Phys. Lett. 1999, 302, 437–446. 10.1016/S0009-2614(99)00179-7. DOI
Boys S. F.; Bernardi F. Calculation of Small Molecular Interactions By Differences of Separate Total Energies - Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553.10.1080/00268977000101561. DOI
Furche F.; Ahlrichs R.; Hattig C.; Klopper W.; Sierka M.; Weigend F. Turbomole. Wires Comput. Mol. Sci. 2014, 4, 91–100. 10.1002/wcms.1162. DOI
Řezáč J. Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 2016, 37, 1230–7. 10.1002/jcc.24312. PubMed DOI
Aquilante F.; Autschbach J.; Carlson R. K.; Chibotaru L. F.; Delcey M. G.; De Vico L.; Fdez. Galvan I.; Ferre N.; Frutos L. M.; Gagliardi L.; Garavelli M.; Giussani A.; Hoyer C. E.; Li Manni G.; Lischka H.; Ma D. X.; Malmqvist P. A.; Muller T.; Nenov A.; Olivucci M.; Pedersen T. B.; Peng D. L.; Plasser F.; Pritchard B.; Reiher M.; Rivalta I.; Schapiro I.; Segarra-Marti J.; Stenrup M.; Truhlar D. G.; Ungur L.; Valentini A.; Vancoillie S.; Veryazov V.; Vysotskiy V. P.; Weingart O.; Zapata F.; Lindh R. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 2016, 37, 506–541. 10.1002/jcc.24221. PubMed DOI
Hesselmann A.; Jansen G.; Schutz M. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. J. Chem. Phys. 2005, 122, 014103.10.1063/1.1824898. PubMed DOI
Werner H. J.; Knowles P. J.; Knizia G.; Manby F. R.; Schutz M. Molpro: a general-purpose quantum chemistry program package. Wires Comput. Mol. Sci. 2012, 2, 242–253. 10.1002/wcms.82. DOI
Blochl P. E. Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G.; Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758–1775. 10.1103/PhysRevB.59.1758. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI
Tkatchenko A.; Scheffler M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 073005.10.1103/PhysRevLett.102.073005. PubMed DOI
Tkatchenko A.; DiStasio R. A.; Car R.; Scheffler M. Accurate and Efficient Method for Many-Body van der Waals Interactions. Phys. Rev. Lett. 2012, 108, 236402.10.1103/PhysRevLett.108.236402. PubMed DOI
Dion M.; Rydberg H.; Schroder E.; Langreth D. C.; Lundqvist B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.10.1103/PhysRevLett.92.246401. PubMed DOI
Lee K.; Murray E. D.; Kong L. Z.; Lundqvist B. I.; Langreth D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 081101.10.1103/PhysRevB.82.081101. DOI
Klimeš J.; Bowler D. R.; Michaelides A. Van der Waals Density Functionals Applied to Solids. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 195131.10.1103/PhysRevB.83.195131. PubMed DOI
Leenaerts O.; Peelaers H.; Hernandez-Nieves A. D.; Partoens B.; Peeters F. M. First-principles investigation of graphene fluoride and graphane. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 195436.10.1103/PhysRevB.82.195436. DOI
Karlický F.; Zbořil R.; Otyepka M. Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets. J. Chem. Phys. 2012, 137, 034709.10.1063/1.4736998. PubMed DOI
Karlický F.; Otyepka M. Band gaps and optical spectra from single- and double-layer fluorographene to graphite fluoride: many-body effects and excitonic states. Ann. Phys. 2014, 526, 408–414. 10.1002/andp.201400095. DOI
Becke A. D. Density-Functional Thermochemistry 0.3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Lee C. T.; Yang W. T.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Schafer A.; Huber C.; Ahlrichs R. Fully Optimized Contracted Gaussian-Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829–5835. 10.1063/1.467146. DOI
Zhao Y.; Truhlar D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. 10.1007/s00214-007-0310-x. DOI
Svoboda V.; Majer V.. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation; Blackwell Scientific Publications: Oxford, 1985; Vol. 32.
Chemistry, properties, and applications of fluorographene